
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/cose
Time and space interval record schedule
consistency analysis for atomic itemswithout
interactions in open spaces with stationary locations5
Fred Cohen*, Don Cohen

Fred Cohen & Associates, PO Box 811, Pebble Beach, CA 93953, USA
a r t i c l e i n f o

Article history:

Received 4 January 2014

Received in revised form

25 January 2014

Accepted 2 March 2014

Available online 1 April 2014

Keywords:

Consistency analysis

Record schedule analysis

Digital forensics

Travel time analysis

Subversion detection
5 The views expressed are those of the auth
Government. Approved for Public Release, D
* Corresponding author. Fred Cohen & Assoc

http://dx.doi.org/10.1016/j.cose.2014.03.002
0167-4048/ª 2014 Elsevier Ltd. All rights rese
a b s t r a c t

Attacks on systems often produce records that are distinguishable from normal records

because, by the nature of the subversions they undertake, they produce records that the

system could not produce under normal operation. This paper outlines a basis for un-

derstanding and determining one class of such discernible subversion inconsistencies

associated with time and space interval record schedule consistency analysis for atomic

items in open spaces without interactions as a method of questioned digital record ex-

amination. It starts with a brief introduction to the issues and description of the specific

problem at hand, develops an approach to solving the problem, and identifies an algorithm

for near-linear time detection of inconsistency or demonstration of a feasible schedule for

special cases likely to occur in real-world record-keeping.

ª 2014 Elsevier Ltd. All rights reserved.
1. Objectives, methodology, background,
and overview

1.1. Objectives

The objective of this paper is to describe an algorithm and

method by which inconsistency analysis may be applied to

detect attempts to subvert systems. The particular algorithm

is suitable for time and space interval record schedule con-

sistency analysis for atomic items without interactions in

open spaces with stationary locations.

1.2. Methodology

The methodology applied was to (1) identify the nature of

the problem, (2) partition the problem by identifying
or and do not reflect the
istribution Unlimited.
iates, PO Box 811, Pebble

rved.
characteristics of relevance, (3) identify an approach to

addressing the inconsistency analysis problem for the

particular cases, (4) identify candidate algorithms based on

knowledge, skills, training, education, and experience, (5)

analyze these algorithms to determine their utility and

complexity, (6) implement versions of these algorithms, (7)

test these algorithms on sample data both generated and real,

(8) write up the results, and (9) submit them to a peer reviewed

journal for consideration.

1.3. Background

Attacks on systems often produce records that are distin-

guishable from normal records because, by the nature of the

subversions they undertake, they produce records that the

system could not produce under normal operation. One of a

potentially unlimited number of examples of this is when a
official policy or position of the Department of Defense or the U.S.

Beach, CA 93953, USA. Tel.: þ1 925 454 0171.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.03.002&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

1 Self-indicating records, on their own, indicate the specified
condition.

2 When we indicate a “time” we mean it to include date, time,
zone, and other relevant details.

3 We will assume times indicated are reconciled to a common
time base for the purposes of this paper.

4 Per L. Duranti, “Diplomatics”, Encyclopedia of Library and
Information Sciences, Third Edition DOI: 10.1081/E-ELIS3-
120043454, 2010, Taylor & Francis. Reliability: the record as a true
statement of fact relates to the extent to which the record reflects
the reality it purports.

5 Summarized in F. Cohen, “Digital Forensic Evidence Exami-
nation e 4th Ed.”, ASP Press, 2009e2012. ISBN # 1-878109-47-2.

6 F. Cohen, “A Note on Detecting Tampering with Audit Trails”,
1995, available at http://all.net/books/audit/audmod.html.

7 T. Stallard and K. Levitt, “Automated Analysis for Digital
Forensic Science: Semantic Integrity Checking”, ACSAC-2003.

8 P. Gladyshev, “Formalising event reconstruction in digital
investigations.” PhD Dissertation; University College Dublin;
2004-08.

9 P. Gladyshev and A. Enbacka, “Rigorous Development of
Automated Inconsistency Checks for Digital Evidence Using the B
Method “, International Journal of Digital Evidence, Fall 2007,
Volume 6, Issue 2.
10 Svein Yngvar Willassen, "Hypothesis-based investigation of

digital timestamps", chapter in Advances in Digital Forensics IV,
Ray and Shenoi ed., Springer, ISBN# 978-0-387-84926-3, 2008.
11 B. Carrier, “A Hypothesis Based Approach to Digital Forensic

Investigation.” PhD Dissertation; Purdue University; May, 2006.

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4294
user uses another user’s identity through privilege escalation.

Other examples include, without limit, deletion or alteration

of logs, use of another user’s account, altering ownership of

files or directories, removal of a disk to duplicate it during

system downtime, altering the names of files to avoid firewall

rules, and use of another user’s facility access badge. Some of

these might be done by altering records, theft of devices,

breaking and entering, exploiting backup and recover mech-

anisms, and any number of other mechanisms.

Rather than seeking to identify themechanisms of privilege

escalation, facility entry, disk removal, facility break-ins,

backup interception and substitution, and every other mecha-

nism that might produce these sorts of records and then

identifying all of the conditions of those records indicative of

each suchmechanism, alongwith theextensive timeandeffort

associated with doing such, we seek generic solutions that

leverage computational advantage to the defender. One notion

for such a defensive mechanism is consistency analysis.

Consistency analysis, as a broad concept, has an enormous

range of possibilities, and if done rapidly enough, can be used

as a detectionmechanismwith real-time response that allows

it to form a preventive mechanism. But even if we cannot do

detection and response in real-time, whether because of the

lack of real-time access to records or the computational

complexity of analysis, a consistency analysis approach that

drives the computational complexity of undetected attack

high enough to make it infeasible is an advantage to the de-

fender, if it can be done with reasonable resources.

One class of such inconsistency detection methods deals

with the movement of people, things, programs, data, or

anything else for which there are records, and the record-

keeping systems associated with such movements. This is

the issue of time and space. Because all digital records must

be of finite accuracy and precision in theory, and in practice

all such records are so, rather than dealing with exact times

and locations, we need to deal with less precise information,

and thus we deal with intervals. The notion of things moving

over time can be considered in light of the notions of

scheduling, an area that has been studied for a long time as

part of the field of operations research, and a field for which

there are many known algorithms. Record schedule consis-

tency analysis is then the set of analytical methods associ-

ated with detecting consistency (confirmation) or

inconsistency (refutation) of the validity of a schedule of

times and spaces reflected in records. A subfield of this area

of study is cases where the things whose times and locations

are associated with the schedules are not multi-part or

separable, and thus cannot appear in two disjoint intervals of

space simultaneously (i.e., they cannot be in two places at

once). For example, people and other physically unique items

can be considered atomic items for intervals large enough to

envelope the items. Interactions between people and other

atomic items can be considered in light of all interactions

between them, but the present effort focuses on how to

perform analysis without taking such interactions into ac-

count, and thus the current study is without interactions.

The movement of items through space and time can be, and

often is, restricted, for example by one way streets or im-

pediments such as walls, which are stationary, and by things

like ships, airplanes, and other moving things that may
contain mechanisms capable of producing records. The pre-

sent study examines only open spaces with stationary loca-

tions, a subset of the more complex overall problem. Thus,

this paper is about identifying inconsistencies between re-

cords and realistic possibilities to detect subversions of sys-

tems resulting from attacks on those systems.

Like any mechanism producing traces, some knowledge of

the nature of the mechanisms is required in order to under-

stand the nature of what is being examined andmeaningfully

examine it. Many digital records self-indicate1 the presence of

an item at a location at a time. For example, a record may

indicate that a particular credit card was present at a partic-

ular card reader at a particular time.2 Multiple records asso-

ciated with this credit card may be used to partially trace its

movement over time. With a few assumptions, we can then

trace the movement of the person using the credit card over

time. But suppose the records are inconsistent in that they

show the same credit cardwas used in Los Angeles, California,

USA and London, England within a 15 min time span.3 This

would indicate a problem in terms of the use of these records

for forensic purposes, and show the tracking of the card and/

or the individual using it to be unreliable.4

Consistency analysis for digital records in limited contexts

has been considered in the literature.5 Papers on audit trail

consistency,6 semantic integrity checking,7 and formalizedevent

reconstruction8 focussed largely on the theoretical basis for such

analysis. As the field progressed, additional efforts were under-

taken for more specific problems, such as rigorous checking for

consistency in systems modeled with finite granularity,9 hy-

pothesis analysis for alternative hypotheses about time

stamps,10 and hypotheses based on investigative approaches.11

More recent papers associated with automated recon-

struction tend to focusmoreon translatingmultiple traces into

http://all.net/books/audit/audmod.html
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4 295
commensurable records from diverse sources12 and apply lit-

tle of the theoretical analysis of consistency to the real prob-

lems of reconstruction that underlie the results they produce.

While producing commensurate records is certainly a vital

component of time analysis, essentially all such papers focus

on identifying time-base offsets, reconciling times to those

fixed offsets, and ordering records based only on those sets of

assumptions. Strict orderings are essentially always assumed

and provided as output, and ancillary information related to

issues of time are largely ignored in most such analysis.

The problem with this approach and set of assumptions is

that, when records are altered or orderings assumed, very

different results may appear than the underlying reality

actually supports. Again, the reliability of these methods

when we loosen the false assumptions of perfect ordering or

precision matching accuracy in time-related traces comes

into potentially serious doubt, and in some cases direct

refutation.
1.4. Underlying notions of time and space

We assume that causality exists and thus that mechanisms

(m) turn causes (C) into effects (E). This is captured in the

expression C/mE. Further, those mechanisms take time.

Thus, in determining the (potential) orderings of events and

associating times for such events, the notion that causes

precede effects by times limited by the mechanisms of cau-

sality is fundamental.

Digital records, or more generally, traces associated with

the execution of digital mechanisms, may be used to analyze

causality relative to an assumed or measured underlying

model of reality. For example, if traces hypothetically pro-

ducible only by unique and finite (in time and space) devices

indicate that an item traveled faster than the speed of light,

then either our model of reality limiting travel to the speed of

light is wrong, or the assumptions about unique and finite

devices producing the trace is wrong. Which of these as-

sumptions is considered wrong is up to the examiner and the

court to decide. Modeling and detecting the inconsistency is

our challenge.

Fundamental to this approach is the notion of travel time.

That is, it takes time to get from place to place, even for digital

information. Thus in C/mE, the delay from C to E associated

with m is positive and bounded from below. Even when we

properly assume that times are ranges and not exact values, as

we identifymoreandmore tracesof thingsat timesat locations,

and assuming we knowminimum travel times associated with

C/mE and pairs of locations, the ranges of times for things at

places get more and more constrained (or at least never less

constrained) with the addition of records. If and as records are

added, they can either come to a final set of currently known

and consistent time and location range constraints, or they can

reachapointwhere some time-spacecondition indicatedby the

records becomes vacuous, in that there is no feasible m s.t.13

C/mE, and thus the records are identified as inconsistent.
12 Christopher Hargreaves, Jonathan Patterson, “An automated
timeline reconstruction approach for digital forensic in-
vestigations”, Digital Investigation 9 (2012) S69eS79.
13 “s.t.” will stand for “such that” throughout this paper.
The general notion is particularized in this paper with re-

gard to time and space interval record schedule consistency

analysis for atomic items without interactions in open spaces

with stationary locations. Breaking that down;

� Time as represented in digital records has finite precision

and thus always represents a time interval. The size of the

interval depends on a range of factors associated with the

clocks that produce those records and themanner inwhich

those clocks are used to produce those records.

� Space is typically identified in terms of recorded locations,

often relative to other locations, such as an address of a

building on Earth. It is also kept to finite granularity, and is

typically associated with a physical object (e.g., a credit

card reader), and thus represents a region of space. The

size and location of the regionmay change over time (e.g., a

credit card reader on an airplane in flight).

� A schedule is a sequence of places over timewhere an item

may have appeared. A consistent schedule is a schedule

which could actually have occurred.

� An atomic item is an item that cannot be separated or

duplicated, and thus can only be in one region of space at

any given region of time, and can only move in time-space

from region to region at finite speed.

� Interactions encompass the issues surrounding meetings

of two or more atomic objects. In this analysis, we ignore

this issue except to note in passing that the interaction of

atomic objectsmay further constrain consistent schedules.

� An open space is a space in which traveling from any

distinct recorded location to any other distinct recorded

location can be done without having to pass through a 3rd

specific recorded location (e.g., the only way from A to B is

through a door that records entries). In Euclidean space,

transitivity of travel time applies (i.e., if you can go from A

to B in time s and from B to C in time t, travel from A to C

can be completed in sþt).

� Stationary locations don’t move relative to the frame of

reference within the time frame at issue. For example, a

credit card reader at a cash register in a hotel in San

Francisco is likely stationary over the period of a week to a

spatial granularity of a few feet, while a credit card reader

in a taxicab in San Francisco is likely not stationary over

the same period relative to the same granularity.
1.5. Implementation data model

In this paper, our goal is to check the consistency of a set of

records supposed to represent the locations of atomic items,

such as people, at times. The times are not expected to be

perfectly accurate, but it is assumed that we can bound their

error. As a result, a timestamp from a record can be thought of

as an interval. We also assume that we can map these in-

tervals to a common time base, allowing them to be mean-

ingfully compared with each other.14
14 Times are somewhat more complex than this since two times
measured by the same clock normally have closely related offsets
and error characteristics. Thus a second level of analysis relative
to different clocks will improve interval reductions and detect
more inconsistencies.

http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4296
We model spatial locations as named places. The con-

straints below (static minimal travel times required to be

positive between any two distinct locations and zero from any

location to itself, along with the triangle inequality) assume

that locations are single stationary points in space. However,

in most cases, they can be reasonably thought of as relatively

small regions of space, in that movement throughout the re-

gion of space they occupy by an atomic object takes time

within time intervals small relative to themovement between

such locations.

We also assume that we can measure or estimate the

minimum time required to get from one location to another. A

set of records is consistent with the minimal travel times if

there is a schedule of (exact) times and places matching the

set of records, in a sense defined more precisely below, which

does not involve traveling from one location to another in less

than the minimal required time.

It turns out that the traveling salesman problem15 is a

special case of our problem, so we don’t expect to be able to

do this checking efficiently in all cases. We do expect that

for our particular application area, this complexity will not

be inherent in the vast majority of cases. In fact, for the

most part, we expect the location records to be linearly or-

dered, that is, given two such records, it will usually be

obvious which one must come first in time. For our purposes

it will typically be adequate to recognize computationally

complex situations and not actually solve them. We hope to

process the records in something close to linear time, or

more realistically in time proportional to n log(n) where n is

the number of location records. This is the same complexity

as the sorting problem. Since a subproblem of our problem,

finding a complete ordering, sorts the records by time, a

more efficient result would imply that we found a more

efficient way of sorting. Finally we note that the field of

operations research has long studied scheduling problems,

but is generally oriented toward finding and optimizing

feasible schedules, with a side effect of failure when no such

schedule exists. We were unable to find any work in this

area related to inconsistency analysis and optimizing

finding inconsistencies.
1.6. Overview of the rest of the paper

The remainder of this paper is organized as follows:

� The problem is more formally defined.

� Some initial analysis is performed on the problem.

� Analysis is provided to determine whether a given order is

consistent with travel time constraints.

� Preprocessing to derive tighter scheduling constraints is

examined.

� Cost of processing pairs of scheduling constraints is

examined for algorithmic complexity.

� Separation into independent subsets of scheduling con-

straints is identified to reduce high complexity situations

and avoid intentional complexity-increasing attacks.
15 Garey, M. R.; Johnson, D. S. (1979), “A2.3: ND22-24”, Computers
and Intractability: A Guide to the Theory of NP-Completeness, W.
H. Freeman, pp. 211e212, ISBN 0-7167-104.
� Localizing inconsistencies is examined.

� Searching for an acceptable order is analyzed and

examined.

� Evaluating search nodes is detailed.

� We summarize, conclude, and identify further work.
2. Problem definition

We are given a (finite) set of records, each indicating that:

� a given atomic object

� was at a given location

� at some time specified to be in a given time interval, i.e., at

or between two given points in time.

Wewill refer to the earlier of the two times as the start time

and the other one as the end time. We will refer to these re-

cords as scheduling constraints.

Weare alsogivenaminimal travel time for eachorderedpair

of locations. The minimal travel times are required to satisfy

the following requirements (and we will assume that they do).

� the time is zero from any location to itself

� the time is positive from any location to any other location

� times satisfy the triangle inequality16

Minimal travel times are not required to be symmetric. For

instance it might take longer to go up hill than down hill.

Atomic objects are not supposed to be in two disjoint lo-

cations at the same time (this is why we call them atomic

objects), and are supposed to behave in accordance with the

following travel time constraint (TTC):

If all of these conditions hold:

� atomic object A is at location L1 at time T1,

� A is at location L2 at time T2,

� T1 � T2,

� the minimal travel time from L1 to L2 is TT

then TT � T2-T1

Now that the input has been described, we turn to the

output and its relation to the input. Our goal is to check

whether the set of scheduling constraints is consistent with

TTC. By this we mean that there is some schedule (defined

below) which both satisfies the set of scheduling constraints

(also defined below) and also satisfies TTC (defined below).

In order to formalize the notions above we define appear-

ances. An appearance is like a scheduling constraint, except

that the time interval is replaced with a single point in time. It

indicates that a given atomic objectwas at a given location at a

given point in time.

We say that an appearance, a, satisfies a scheduling

constraint, c, if
16 David E. Joyce (1997). “Euclid’s elements, Book 1, Proposition
20”. Euclid’s elements. Dept. Math and Computer Science, Clark
University. Retrieved 2010-06-25.

http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4 297
� the atomic object of a is the same as the atomic object of c,

� the location of a is the same as the location of c,

� the time of a is in the time interval of c

A schedule is a set of appearances. We say that a schedule

satisfies a set of scheduling constraints if for each scheduling

constraint, c, in the set, the schedule contains some appear-

ance, a, such that a satisfies c.

Wewill say that a schedule violates TTC if it contains a pair

of appearances that require the same atomic object to be in

two locations at two times where the difference between the

two times is less than the minimal travel time from the

location at the earlier time to the location at the later time.

This condition is simply the negation of the TTC definition

above, where an appearance of atomic object A at time T at

location L is interpreted as “A is at location L at time T”.

If a schedule does not contain such a pair of appearances

we will say that it satisfies TTC.

As an example, a set of scheduling constraints is

� George is at LAX17 some time between 06:0018 and 07:3019

� George is at SFO20 some time between 08:00 and 09:30

� George is at SEA21 some time between 17:00 and 21:00

A schedule satisfying that set of scheduling constraints is

� George is at LAX at 06:00

� George is at SFO at 08:15

� George is at SEA at 21:00

This schedule would satisfy TTC iff all of these hold

� theminimal time from LAX to SFO is less or equal to 02:1522

� the minimal time from SFO to SEA is less or equal to 12:45

� the minimal time from LAX to SEA is less or equal to 15:00
17 Los Angeles International Airport covers about 640 acres and
is located about 16 miles West from downtown Los Angeles,
California.
18 Real times in this paper are in military notation (4 integers 00:

00e23:59) in Pacific time on the same date with the actual date
assumed irrelevant.
19 A quick lookup indicates that there is a United Airlines flight

from LAX at 06:02 arriving SFO 07:22.
20 San Francisco International Airport covers about 150 acres

and is located about 30 miles south of downtown San Francisco,
California.
21 Seattle/Tacoma International Airport is part of the Port of

Seattle, which sits on about 1543 acres of waterfront and nearby
properties between Seattle and Tacoma Washington.
22 Differential times in this paper are in HH:MM notation.
3. Some initial analysis

A few facts that may seem obvious are still so useful as to be

worth mentioning:

A violation of TTC involves only a single atomic object.

(This is the point of “without interactions” in the title of the

paper.) Therefore all atomic objects can be analyzed inde-

pendently. For the remainder of this paper we will assume

that the set of scheduling constraints has been sorted into sets

by atomic object and we are dealing only with the set of

scheduling constraints for one atomic object. Similarly, when

we discuss a set of appearances, we will assume they all deal

with the same atomic object, which is the one in all of the

scheduling constraints under consideration.

If a schedule satisfies TTC then the result of deleting any

subset of its appearances still satisfies TTC.

Conversely, if a schedule violates TTC then the result of

adding appearances also violates TTC.

If a set of scheduling constraints is consistent with TTC

then so is any subset of that set. Conversely, if a set of

scheduling constraints is not consistent with TTC then every

superset of that set is also not consistent with TTC.

It should be clear at this point how we can test whether a

schedule satisfies TTC. However, a straight forward trans-

lation of the definition of a schedule satisfying TTC would

require checking every pair of appearances, as shown in the

example above. It is actually adequate to sort the appearances

by time and test only the adjacent pairs. This is because of the

triangle inequality. If there is any pair of appearances that

violates TTC, then some adjacent pair must also violate TTC.

This is important for our purposes because it reduces the cost

of the check fromquadratic in the number of appearances to n

log(n) for sorting plus another linear pass for checking adja-

cent pairs.

Suppose an atomic object is scheduled to be in three

locations,

L1, L2, L3, at three times,

T1 < T2 < T3.

We will refer to the minimal travel time from Li to Lj as Tij.

Suppose that TTC is satisfied for the adjacent pairs:

T12 � T2-T1, T23 � T3-T2

Then it follows (by adding the inequalities) that:

T12þT23 � (T2-T1) þ (T3-T2)

But the triangle inequality says that:

T13 � T12þT23 � (T2-T1) þ (T3-T2)

Replacing (T2-T1)þ (T3-T2) with T3-T1 then gives TTC for the

non-adjacent pair of appearances.

A straight forward interpretation of our problem statement

presents another more serious problem: there are infinitely

many schedules that satisfy any set of scheduling constraints,

for several reasons. Even if we can efficiently check one, we

can’t check them all.

The first reason there are infinitely many schedules is that

a schedule could have more appearances than it needs just in

http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4298
order to satisfy the given set of scheduling constraints. How-

ever, if there is such a schedule that satisfies TTC, then dis-

carding the unnecessary appearances will result in another

schedule that still satisfies TTC. Therefore, in order to deter-

mine whether there is a schedule that satisfies the set of

scheduling constraints and also satisfies TTC, it is not neces-

sary to consider schedules containing extra appearances.

More specifically, for any set of scheduling constraints, C, if

there is any schedule satisfying both C and TTC, then there is a

schedule, S, also satisfying both C and TTC, which has the

additional property that there is a bijection23 between the

scheduling constraints of C and the appearances of S which

maps each scheduling constraint c in C to an appearance a in S

where a satisfies c. In order to construct a schedule satisfying a

set of scheduling constraints, C, we will construct for each c in

C one appearance satisfying c.24

The other source of infinitely many schedules is the fact

that, at least in the normal interpretation of time, there are

infinitely many points in time in most intervals (the excep-

tions being intervals of size zero). This problem is solved as

follows: given an order, c1, c2, . for the set of scheduling

constraints, C, it is possible to determine whether that

particular order is consistent with TTC, by which we mean

that there is a schedule S that not only satisfies C and satisfies

TTC, but also has the property that the times of the appear-

ances of S are in the same order as the ordering of C. That is,

for any two scheduling constraints ci and cj, if i< j, ti is the time
23 See http://en.wikipedia.org/wiki/Bijection or one of the many
references it cites: “This topic is a basic concept in set theory and
can be found in any text which includes an introduction to set
theory. Almost all texts that deal with an introduction to writing
proofs will include a section on set theory, so the topic may be
found in any of these: . Wolf (1998). Proof, Logic and Conjecture:
A Mathematician’s Toolbox. Freeman. Sundstrom (2003). Mathe-
matical Reasoning: Writing and Proof. Prentice-Hall. Smith; Eggen;
St.Andre (2006). A Transition to Advanced Mathematics (6th Ed.).
Thomson (Brooks/Cole). Schumacher (1996). Chapter Zero:
Fundamental Notions of Abstract Mathematics. AddisoneWesley.
O’Leary (2003). The Structure of Proof: With Logic and Set Theory.
Prentice-Hall. Morash. Bridge to Abstract Mathematics. Random
House. Maddox (2002). Mathematical Thinking and Writing. Har-
court/Academic Press. Lay (2001). Analysis with an introduction to
proof. Prentice Hall. Gilbert; Vanstone (2005). An Introduction to
Mathematical Thinking. Pearson Prentice-Hall. Fletcher; Patty.
Foundations of Higher Mathematics. PWS-Kent. Iglewicz; Stoyle.
An Introduction to Mathematical Reasoning. MacMillan. Devlin,
Keith (2004). Sets, Functions, and Logic: An Introduction to Ab-
stract Mathematics. Chapman & Hall/CRC Press. D’Angelo; West
(2000). Mathematical Thinking: Problem Solving and Proofs.
Prentice Hall. Cupillari. The Nuts and Bolts of Proofs. Wadsworth.
Bond. Introduction to Abstract Mathematics. Brooks/Cole. Barnier;
Feldman (2000). Introduction to Advanced Mathematics. Prentice
Hall. Ash. A Primer of Abstract Mathematics. MAA.”
24 Note that a schedule may have two appearances that have the

same atomic object, location and time. Similarly we could be
given two identical scheduling constraints which we would view
as separate constraints by virtue of being presented as different
records. It is possible for one appearance to satisfy two sched-
uling constraints, but again we need not look for schedules con-
taining fewer appearances than the number of scheduling
constraints because if there is such a schedule, there will also be
one of the expected size, the result of duplicating the appropriate
appearances.
of the appearance satisfying ci and tj is the time of the

appearance satisfying cj, then ti � tj. Since we are dealing with

finite sets of scheduling constraints, there are only finitely

many orderings, so at worst we can check each ordering, and

if none is consistent with TTC we will know that the set of

scheduling constraints is not consistent with TTC.
4. Determining whether a given order is
consistent with TTC

Given an ordered set of scheduling constraints, along with

minimal travel time data, if there is a schedule of appearances

which satisfies TTC and also has the property that the i’th

appearance satisfies the i’th scheduling constraint, then one

such schedule is produced by the algorithm below. This al-

gorithm constructs the schedule in which every appearance is

as early as possible:

� For the first scheduling constraint in the order, c1, create an

appearance where the time is the start time of c1.

� As long as there are more scheduling constraints to

schedule, do the following to schedule the appearance

for the next scheduling constraint, ci+1, using the time

just assigned to the appearance for the last one sched-

uled, ci:
Find theminimal travel time from the location of ci to the

location of ci+1.

Add that to the time just scheduled for ci.

If this result is later than the end time of ci+1
then there is no schedule (with this order) that

satisfies TTC

Otherwise,

assign as the time for the appearance for ci+1, the

later of the computed result above and the start

time of ci+1.
A similar procedure could be used starting from the last

appearance to construct a schedule in which every appear-

ance is as late as possible.

At this point we have an algorithm that, as far as anyone

currently knows, cannot be significantly improved in the

worst case: iterate over all orders of the scheduling con-

straints checking for an order that is consistent with TTC.

However, this can be improved a great deal in the cases we

expect to encounter. In particular, we describe the following

optimizations below:

� separation of a sequence of scheduling constraints into

independent subsets

� ways to "improve" scheduling constraints

� ways to prune the search
5. Preprocessing to derive tighter scheduling
constraints

A single scheduling constraint cannot be inconsistent with

travel time data. A pair of scheduling constraints can be. If

http://en.wikipedia.org/wiki/Bijection
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4 299
there were a good chance of finding a pair of inconsistent

scheduling constraints (a property of the data source) then it

might be worth while to test consistency of pairs as a way to

avoid other work. We have other reasons for considering

pairs of scheduling constraints. In addition to being either

consistent or inconsistent with TTC, a pair of scheduling

constraints, in conjunction with TTC, can imply additional

constraints that we will find useful below. As usual in this

problem, how useful it actually turns out to be is a property

of the data source.

Consider the following two scheduling constraints:

� George is at LAX some time between 06:30 and 07:00

� George is at SFO some time between 07:30 and 08:30.

Suppose that it takes at least 01:2025 to get from LAX to SFO.26

If George left LAX as early as possible, 06:30, hewouldn’t get to

SFO until 07:50. Therefore we are justified in claiming

� George is at SFO some time between 07:50 and 08:30

This is just a stronger version of the original scheduling

constraint involving SFO (being at SFO some time between

07:50 and 08:30 implies being there some time between 07:30

and 08:30), so we can simply replace the original version with

the new one. That is, the set of schedules that satisfy the new

set of scheduling constraints will be the same as the set of

schedules that satisfy the old set. Tighter scheduling con-

straints better constrain the search for an acceptable schedule

in section “searching for an acceptable order” and thereby

lead to more efficient search.

Similarly, in order to get to SFO as late as possible, 08:30,

George would have to leave LAX by 07:10. This justifies the

claim

� George is at LAX some time between 06:30 and 07:10

This is a stronger version of the LAX scheduling constraint,

and again replacing the old one with the new one does not

affect the set of schedules but may result in more efficient

search later on.

More generally, when we consider two scheduling con-

straints, c1 and c2, in conjunction with TTC, we consider two

different questions:

� Is it possible for c1 to precede c2? That is, would starting at

the start time of c1 from the location of c1 and then trav-

eling as quickly as possible to the location of c2 get there

before the end time for c2?

� Is it possible for c2 to precede c1? (The translation is anal-

ogous to above.)

If neither is possible, then we know that the two sched-

uling constraints are inconsistent with TTC, and therefore so

is the larger set of scheduling constraints. If only one order is
25 Current air traffic schedules indicate 1:20 minimum nonstop
departure to arrival.
26 Distance runway to runway is 338 miles per http://www.

webflyer.com/travel/mileage_calculator/.
possible, then it may be possible to derive some tighter ver-

sions of one or both scheduling constraints, as illustrated

above. In particular, in the casewhere the time intervals of the

two scheduling constraints overlap, if it turns out that TTC

requires one to precede the other, the time intervals will no

longer overlap in the tighter versions. One advantage of using

the tighter versions is that in certain subsequent processing it

will be more immediately evident that one has to precede the

other.

Finally, it is possible that, even including TTC, the two

scheduling constraints could be satisfied by appearances in

either order. This is the normal case in the traveling salesman

problem, e.g.,

� George is at LAX some time between 0:900 and 18:00

� George is at SFO some time between 09:00 and 18:00

and it takes at least 1:20 to get either from LAX to SFO or back.

In this case it is still possible to derive a stronger result,

namely

� Either

George is at LAX some time between 09:00 and 16:40

and at SFO some time between 10:20 and 18:00

Or

George is at SFO some time between 09:00 and 16:40 and

at LAX some time between 10:20 and 18:00

However, this does not have the same form as our sched-

uling constraints, and reasoning with disjunctions tends to

lead to exponential complexity. Therefore, at present we do

not attempt to use such results.

It is also possible to derive additional constraints from

triples, quadruples, or more generally n-tuples of scheduling

constraints. In particular, for any size, n, it is possible for a

subset of size n to be inconsistent with TTC, even though

every subset of size less than n is consistent with TTC. Of

course, the cost of checking n-tuples increases more than

linearly in n.27 In any case, our current implementation does

not go beyond pairs.
6. Cost of processing pairs of scheduling
constraints

Processing every pair of scheduling constraints would take

time at least quadratic in the number of scheduling con-

straints. However, in cases of interest, most of this cost can

normally be avoided. In particular, the processing described

above does no good for two scheduling constraints, c1 and c2,

if the end time of c1 is earlier than the start time of c2 by more

than the minimal time required for getting from the location
27 The diagonal stripe argument used below for pairs could be
applied here to argue that the number of triples, quadruples, or
more generally n-tuples that we need to process is actually linear
in the number of scheduling constraints. Furthermore, the cost of
processing an n-tuple, while more than the cost of processing an
(n � 1)-tuple, is still constant.

http://www.webflyer.com/travel/mileage_calculator/
http://www.webflyer.com/travel/mileage_calculator/
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

28 Note that the algorithm above relies on start times
remaining sorted (and the mirror image algorithm relies on end
times being sorted) to determine when to terminate the inner
loop, so we don’t want these changed by processpair. The
current implementation makes copies of the original start and
end times of the scheduling constraints and uses the copies to
control the loop. The "real" start and end times are altered by
processpair and these values are propagated. At the beginning
of each forward or backward pass the scheduling constraints
must be resorted, since the updates to their intervals affects
the order. At this time the updated interval data is copied again
so that it can be used to terminate the inner loop in the next
pass.

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4300
of c1 to the location of c2. It may be complicated to arrange to

spend time proportional to the number of pairs that are

within their travel times, but it is relatively easy to take

advantage of a simpler version of this observation: Nothing is

gained by processing a pair in which the time intervals are

separated by more than the maximum of all minimal travel

times.

Suppose, for example, that our data source is a security

system that records when people enter and leave various

areas within a facility. Suppose the maximum of all minimal

travel times is 1 h, i.e., you can get from any place to any other

place within an hour. Now suppose we are given a set of 1000

records (scheduling constraints) for one person over amonth,

an average of 50 records per day over 20 work days, mostly

concentrated during 8 work hours per day. Most records in

this case are within an hour of only about a dozen other re-

cords, far fewer than the 1000 total records. If we imagine a

square matrix in which the rows and columns are each

labeled with the scheduling constraints, instead of process-

ing the entire matrix we are now processing a diagonal stripe.

The width of that stripe is the number of scheduling con-

straints (for a given atomic item) that occur within the

maximum minimal travel time of a given scheduling event.

This we regard as approximately linear in the number of

scheduling constraints, at least for the types of problems we

expect.

In terms of an algorithm to take advantage of this obser-

vation, suppose we wish to iterate over all pairs of scheduling

constraints, c1, c2 where the time intervals of c1 and c2 are

separated by less than some time, T:

1. create an array A containing the scheduling constraints

2. sort A by start time

3. for i from 1 to A.length do

for j from iþ1 to A.length while A[i].endþT <¼ A[j].start

do

processpair(A[i],A[j])

The for while syntax indicates that the loop should end

when either the index reaches the limit or the test fails.

The cost of sorting A is presumably on the order of n

log(n) where n is the number of scheduling constraints. This

algorithm only processes pairs c1 and c2 where c1 is earlier in

the sort order than c2. In addition to the actual processing of

pairs, it has to iterate over and test at most one more j value

than will end up actually being processed for each i value.

Now comes some less pleasant news: Whenever we derive

a tighter interval for a scheduling constraint, it would be

useful to re-process relevant pairs involving that scheduling

constraint so as to find further improvements of intervals. The

order in which these pairs are processed will generally affect

the amount of work involved. If processing a pair updates the

time interval of a scheduling constraint that is in use by the

algorithm above, then subsequent use of that scheduling

constraint already uses the improved time interval. In general,

the algorithm above tends to propagate forward in time the

updates that increase start times, e.g., the travel time between

the first two locations will result in increasing the start time at

the second location, and that new start time, in conjunction

with the travel time from the second location to the third will
affect the start time for the third location. Intuitively, this is

due to the fact that earlier pairs are processed before later

pairs.

However the propagation of the other type of update,

decreasing the end times, is very poorly handled by that al-

gorithm. For that purpose it would be better to use a mirror

image version of the algorithm that processes later pairs

before earlier ones. Our current implementation alternates

between the forward and backward algorithms until an entire

pass through the data fails to improve any bounds. If the

scheduling constraints were linearly ordered, it would seem

that one pass in each direction should be enough, but of

course this is not true in general.28

The improvement of time intervals in one pass can reduce

the number of pairs processed in later passes, since it may

turn out that a pair that was previously separated by less than

T is now separated by more. Furthermore, since the improved

bounds also improve the ordering of the scheduling con-

straints, the propagation of constraints in one direction or the

other tends to be improved.

We do not currently have good bounds on the number of

passes that can be required, but we expect thatmore than two

will be unusual (forward, backward and then another forward

to verify that no new results are discovered).
7. Separation into independent subsets of
scheduling constraints

For any problem with high complexity, it is clearly advanta-

geous if the problem can be separated into smaller pieces

that can be solved independently, at least if it’s not too

difficult to recombine the solutions for the pieces into a so-

lution for the original problem. One obvious example of

separation is that the scheduling constraints involving

different atomic objects can be processed independently.

Another way to separate a set of scheduling constraints uses

the previously described maximum of all minimal travel

times. In our earlier example, we expect that a person will be

observed at various places during the work day, but not be

observed at all from the end of the work day until the

beginning of the next work day, a time greater than the hour

required to get from any known location to any other. This

allows us to independently test the consistency of his set of

scheduling constraints for each day, thereby replacing one

problem of size 1000 with 20 problems of size 50, or perhaps

http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4 301
even further if he stays in one place for more than an hour at

a time.

An algorithm for separating scheduling constraints into

subsets separated by at least time T is straight forward:

1. For each scheduling constraint, create a start time record

and an end time record (the start time record contains the

start time of the scheduling constraint plus the fact that it

is a start time, and similarly for the end time record)

2. Create a single array containing all of these records and

sort it by time

3. initialize the variable C to 0 (C counts the scheduling

constraints in progress)

4. iterate through the array from smallest time to largest, at

each step doing:

� if the next entry is a start record, add 1 to C

� if the next entry is a stop record, subtract 1 from C (C

should never be negative)

� Whenever C is set (decremented) to 0, compute the

difference between the (end) time of the record that

caused the decrement to the (start) time of the next

record. If this difference is more than T, then the set

can be separated by the time interval between the

(stop) time of this record and the (start) time of the next

record.
8. Localizing inconsistencies

Up to here we have presented the goal as simply determining

whether a set of scheduling constraints is consistent with

TTC. In reality, if the set is inconsistent, then further infor-

mation is generally of interest. To the extent possible, wewish

to present to humans some explanation of the inconsistency.

To begin with, which atomic object has an inconsistent set of

scheduling constraints? Furthermore, if more than one such

atomic object exists, it will be of interest to identify all of

them. That is, we should not stop after the first inconsistency

is found. Even for a given atomic object, the separation into

subsets of scheduling constraints that are separated by the

maximum minimal travel time is useful in that it will be of

interest to separately report different subsets that are

inconsistent.

In the case where a search shows that there is no consis-

tent schedule, the explanation is easy to understand in some

abstract sense, but difficult to understand in the sense of a

succinct (and yet still compelling) argument. Human con-

sumers of such information would always prefer a succinct

argument. Although such an argument is not available in

general, the case where two scheduling constraints prove to

be inconsistent with TTC is an exception where we can pro-

vide such an explanation, and we wish to do so. This is

another reason for the preprocessing phase.

Even after finding an inconsistent pair in a subset of

scheduling constraints that can no longer be separated, it

would be useful to continue to search for "unrelated" in-

consistencies. Our current implementation skips any

further processing of scheduling constraints sorted be-

tween the two found to be inconsistent. In particular, if
processpair(A[i],A[j]) discovers an inconsistency, the

response is to exit the inner loop and resume the outer loop

with i set to j.
9. Searching for an acceptable order

When a set of scheduling constraints has been separated as

far as possible into independent subsets, we still have the

problem of testing a subset for consistency with TTC. This is

done by searching for an ordering for that set of scheduling

constraints that is consistent with TTC. In the worst case, of

course, this might end up testing all n! orders of n scheduling

constraints. As noted above, it is reasonable to limit the effort

in such a process and report a result of failure due to high

complexity when that limit is exceeded. In the best case, only

one order is consistent with the time intervals of the sched-

uling constraints, independent of TTC. One would hope that

in such cases the effort involved would be approximately

proportional to the number of scheduling constraints. By

making the limit (approximately) proportional to the number

of scheduling constraints we can keep the cost of the pro-

cessing (approximately) proportional to the number of

scheduling constraints, while still finding acceptable sched-

ules in the normal cases. The algorithms below create new

search nodes in constant time, and the number of search

nodes created for a linearly ordered set of n scheduling

constraints is n (or possibly less if they are not consistent

with TTC). Of course, all of this ultimately depends on the

actual data that arrives. If the real world does not conform to

our expectations then we will either have to accept longer

processing times or more failures due to high complexity

than we hope for. Note, however, that the frequency of high

complexity failures is also highly dependent on the effec-

tiveness of the algorithms that control the search, which are

described below.

Our current implementation does a depth first search for

an ordering on scheduling constraints, where each node in the

search tree represents an initial segment of the order and each

child of a search node represents the result of adding one

scheduling constraint to the end of the segment represented

by its parent. It should be clear that if the end time of sched-

uling constraint c1 is earlier than the start time of scheduling

constraint c2, then c1 must be scheduled earlier than c2. This

can be incorporated into the depth first search as follows:

given a search node, limit the set of child nodes to those that

assign as the next scheduling constraint, c1, those scheduling

constraints for which there is no other scheduling constraint

remaining to be added, c2, where the end time of c2 is earlier

than the start time of c1. In the case where the scheduling

constraints are linearly ordered (where no intervals overlap),

this leads to a linear search, at least in terms of the number of

search nodes created.

However, this does not mean that the entire process takes

linear time. If it takes time proportional to n to find the single

allowable next of n scheduling constraints, then creating n

search nodes will have taken time proportional to n2. The

current implementation arranges to find each of the allow-

able next scheduling constraints in constant time by main-

taining a representation of the set of scheduling constraints

http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

29 Distance runway to runway is 678 miles per http://www.
webflyer.com/travel/mileage_calculator/.
30 Current air schedules indicate a minimum travel time of 1:50

nonstop departure to arrival.
31 Again, looking at commercial schedules, the next available

flight is SFO 8:35AM/SEA 10:35AM.

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4302
still to be added in a data structure that contains two sorted

lists of the scheduling constraints, one sorted by start time

and the other by end time. In order to iterate over the set of

allowable next scheduling constraints, one first finds the

earliest end time, i.e., the end time of the first in the list of

scheduling constraints ordered by end time. Then one iter-

ates through the list of scheduling constraints ordered by

start time, stopping when the start time exceeds the earliest

end time. In order to maintain these lists incrementally, they

can be represented by doubly linked lists, where deleting an

element can be done in constant time. This involves

following the forward and backward links from that element

and then making those previous and next elements point to

each other.

Moving deeper into the search tree involves removing a

scheduling constraint from the set remaining to be scheduled,

which is done in constant time, but backtracking to an earlier

state requires adding a scheduling constraint back to that data

structure. This would seem to involve finding its start and end

times in the sorted lists, which would take at least log(n) time

and even that would require a more complicated data struc-

ture than the linked list. That would be the case if we were

adding an arbitrary scheduling constraint to the set, but recall

that we are actually only returning to a previous state. Given

that the new state was reached by splicing this element out of

the list we can simply record the data needed to undo that

operation. Saving and using that data takes a (small) constant

amount of time and space.

The current implementation manages to avoid even the

small task of allocating space and filling it with undo data on

the way into the search tree. The representation of the or-

dered lists created at the start of the search involves a few

arrays. Suppose we have n scheduling constraints identified

by numbers 1 through n, and that given an index, i, we can

find scheduling constraint i in constant time. When we sort

these scheduling constraints by start time we get some per-

mutation, e.g., 4 3 5 2 1.

We will add to this two more parallel arrays for next and

previous pointers. The next pointer for the last element and

the previous pointer for the first element will be zero. We will

also add some variables to hold the index of the first and last

elements:

element 4 3 5 2 1

next 2 3 4 5 0 first ¼ 1

prev 0 1 2 3 4 last ¼ 5

In other words, the first element is the one at index 1 (the

value of first), and at index 1 (the left most column of

numbers) we see that this is scheduling constraint 4, the next

element (in this case the one with next larger start time) is the

one at index 2, and the previous element is the one at index

0 (meaning that there isn’t any previous). Removing the

element at index i is just splicing it out of the list:

nextind ¼ next[i]

prevind ¼ prev[i]

if prevind¼¼0 thenfirst¼nextindelsenext[prevind]¼nextind

if nextind¼¼0 then last¼prevind else prev[nextind]¼prevind
So, for example, the result of removing the second element

of this array (which happens to be the scheduling constraint

identified as element 3) would be

element 4 3 5 2 1

next 3 3 4 5 0 first ¼ 1

prev 0 1 1 3 4 last ¼ 5

Notice that we have not changed the pointers associated

with element 2 itself. These now serve as our undo infor-

mation! In order to reverse the change we simply look at

these pointers to see which elements were the ones before

and after this element. We want the one that was before to

point to this one as its next element, and the one that was

after to point to this one as its previous. So to undo the

removal of element i:

nextind ¼ next[i]

prevind ¼ prev[i]

if prevind¼¼0 then first¼i else next[prevind]¼i

if nextind¼¼0 then last¼i else prev[nextind]¼i
10. Evaluating search nodes

When we add a scheduling constraint to a sequence of earlier

scheduling constraints we have to check that the result is

consistent with TTC. If it is not, then clearly this search node

can be pruned. We saw earlier how the entire sequence could

be checked in linear time. Now we want to check it incre-

mentally in constant time for a single addition. Fortunately,

the entire sequence was tested by considering the elements in

order, and we can arrange to do that incrementally as we

traverse the search tree. As we add scheduling constraints to

the sequence we keep track of the earliest start time of each

one due to the earlier ones. As an example, consider the

following path through a search tree:

� George is at LAX some time between 06:00 and 07:00

� George is at SFO some time between 07:00 and 09:00

� George is at SEA some time between 09:00 and 10:30

If the minimal travel time from LAX to SFO is 01:20 we

should record when we add SFO that it cannot be reached

until at least 07:20. At this point we can also test whether SFO

had to be reached before that time, and if so, prune this path

through the search tree. Otherwise, this information only has

to be available whenever we try to extend the sequence by

adding an additional scheduling constraint after SFO. If the

minimal travel time from SFO to SEA29 is 02:0030 we would

record when we add SEA that it cannot be reached until at

least 09:20, and so on.31

If we find that we cannot reach SEA in time from SFO, one

might expect that a depth first search would then resume by

http://www.webflyer.com/travel/mileage_calculator/
http://www.webflyer.com/travel/mileage_calculator/
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4 303
selecting an alternative scheduling constraint to try adding

after SFO. However this cannot succeed. By failing to reach

SEA in time from SFO we have actually shown that the

schedule up to SFO is not going to work, and we should

therefore seek an alternative to SFO as the location to visit

after LAX. The reasoning that justifies this conclusion is that if

we don’t visit SEA immediately after SFO, we still have to visit

it later, and as we have shown earlier, visiting some other

location first cannot help us get to SEA in time.

This suggests that after finding that the sequence LAXeS-

FOeSEA is inconsistent with TTC, we could remember that

and recognize any other sequence in which this appears as a

subsequence. For instance, if we decide to change SFO to

DEN,32 we should not then try to go from DEN to SFO33 since

we would still have to visit SEA and the resulting schedule

would then include as a subsequence the impossible LAXeS-

FOeSEA. It is not clear howmuch it would cost to try to record

and use such forbidden subsequence results, nor is it clear

how much good it would do in the cases of interest. The cur-

rent implementation does not try to do this.
11. Summary, conclusions, and future work

In seeking more generic and higher computational leverage

approaches to detecting subversions of systems, the area

of consistency analysis has emerged as one of the potential

areas for detecting a broader spectrumof attack activities with

less computation than alternative approaches, and doing so in

such a manner as to make it very difficult for an attacker to

subvert a system without being detectable.

This paper describes a near-linear time O(n log(n)) solution

to a subset of consistency problems. In particular, we address

time and space interval record schedule consistency analysis

for atomic items without interactions in open spaces with

stationary locations. The samealgorithmsmaybeused to solve

related problems in more time, but we expect the general case

to take exponential time. We also expect that similar methods

will generalize to closed spaces with interactions and non-

stationary locations, and thesewill be the focus of future work.

A number of simplifications have been made in the model

described here and it might be useful to extend results to a

broader set of situations:

� We currently model locations as single points in space, but

it might bemore accurate to use regions of space just as we
32 Distance runway to runway is 860 miles (LAX/DEN) and 1020
miles (SEA/DEN) per http://www.webflyer.com/travel/mileage_
calculator/.
33 Distance runway to runway is 965 miles per http://www.

webflyer.com/travel/mileage_calculator/.
34 For example, if records indicate that John is in Pasadena at 12:

01 and Los Angeles at 12:02, this seems fine because they have a
common border. Likewise, if records indicate that John is in Los
Angeles at 12:02 and Santa Monica at 12:03, that seems fine
because they also have a common border. But there are no places
in Santa Monica that can be reached in 2 min from any places in
Pasadena by people. This violates the triangle inequality, which is
the basis for reducing the complexity in our first example from
quadratic to linear.
use intervals of time. This was not done here because it

leads to problems in the meaning of minimal travel time.34

Thus the necessary assumption that regions of space

associated with locations are small relative to travel times

at issue is used above.

� We currentlymodel locations as stationary points in space.

But many records are associated with non-stationary lo-

cations, such as ships, cars, trains, and planes.

� In the current model, all timestamps are independently

translated into intervals in a common time base. But in

cases where timestamps come from the same or otherwise

related clocks, we may know their difference to much

higher accuracy than we do from unrelated clocks. Thus

wemay be able to determine that a set of records otherwise

undetectable as inconsistent to be inconsistent by using

the associated additional constraints on intervals.35

In addition to relaxing these simplifications, substantial

future work is required in order to deal with the more general

related problem set. In particular, time and space Interval

record schedule consistency analysis for atomic and non-

atomic items with Interactions in open and closed spaces

with stationary and non-stationary locations.

The current implementation and approach are already

useful in questioned document examination of digital records

for two purposes.

� It identifies sets of records that are unreliable and isolates

them from other records that are not demonstrably unre-

liable by these methods, thus “sealing the breech” of un-

reliable records it identifies while demonstrating that

something is wrong with those records, and

� It produces feasible event sequences for records not shown

to be unreliable by these methods, thus producing a basis

for further investigation. In addition, through investiga-

tion, additional records or facts may be identified and

added to the analysis so as to further reduce the number of

feasible schedules and better particularize the event

sequence and time intervals at issue.

Another beneficial side effect of the particularization pro-

cess is that it reduces the investigative search and asserted

claim spaces by reducing the intervals of records and loca-

tions of itemswith added data. Thus asmore andmore details

are identified and added, the time frames for each item and

event become tighter and tighter, leading to potentially

smaller and smaller sets of suspected activities, interactions,

alternative claims of event sequences, and potential leads.

Inaccurate statements and claims are harder and harder to

claim without violating a constraint, and testing such claims

against the current body of constraints becomes more effi-

cient. For the investigator going into an interview, the
35 For example, suppose Joe is recorded at location1 at 12:05 and
again at 12:15, and at location2 at 12:10. If all of the timestamps
are known to have errors of less than 5 min, then minimal TT
between the two locations of 10 min would be consistent, since
the first appearance at location1 could be at 12:00 and the second
at 12:20. But if we know that the two timestamps at location1 are
measured by related clocks with differentials less than 1 s per day
(e.g., if they use NTP synchronization), then this is not possible.

http://www.webflyer.com/travel/mileage_calculator/
http://www.webflyer.com/travel/mileage_calculator/
http://www.webflyer.com/travel/mileage_calculator/
http://www.webflyer.com/travel/mileage_calculator/
http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

c om p u t e r s & s e c u r i t y 4 5 (2 0 1 4) 2 9 3e3 0 4304
additional knowledge presents improved opportunities for

detecting falsehood, jogging of memories, and identifying

lines of inquiry.

It has been suggested that an attack against such a system

would be to intentionally create conditions driving the

complexity of algorithms high so as to cause them to be un-

able to perform timely detection. In our experience, such high

complexity cases are readily identified by long algorithm run

times, and if the run times are sufficiently long to be highly

variant from normal system operation, this too is an indicator

of the system operating inconsistently with its normal oper-

ation. Thus the attack against the mechanism self-indicates

that the mechanism and thus the system are being attacked.

Avoiding detection in this way is detectable.

For the more distant future, there is the more general

problem of moving from schedule analysis to a more general

model of location over time for sets of interacting objects.

This is similar to the sorts of challenges faced in optimal

robot path planning, where paths of multiple manipulators

starting at a given set of places, times, and poses and ending

at another set of places and poses within a 4-dimensional

time-space avoid collisions and facilitate hand-offs of work-

pieces from manipulator to manipulator. The notional

forensic equivalent would be the presentation of a multi-
dimensional depiction of all objects and all possible in-

teractions with the ability to add constraints and see the

implications. For example, imagine an analysis fusing

together all relevant records from all available sources to

reconstruct all of the actors and actions related to a criminal

act from the initial idea formation and planning through

committing the crime and subsequent attempts to get away.

While we currently believe that this problem will be intrac-

table, we also speculate that large and useful subsets of this

problem may be tractable under some reasonable

assumptions.

Fred Cohen is best known as the person who defined the term
“computer virus” and the inventor of most of the widely used
computer virus defense techniques, the principal investigator
whose team defined the information assurance problem as it re-
lates to critical infrastructure protection, as a seminal researcher
in the use of deception for information protection, as a leader in
advancing the science of digital forensic evidence examination,
and as a top flight information protection consultant and industry
analyst.

Don Cohen has done work in artificial intelligence, automatic
programming and computer security, including attribution,
packet flooding defense and attack detection.

http://dx.doi.org/10.1016/j.cose.2014.03.002
http://dx.doi.org/10.1016/j.cose.2014.03.002

	Time and space interval record schedule consistency analysis for atomic items without interactions in open spaces with stat ...
	1 Objectives, methodology, background, and overview
	1.1 Objectives
	1.2 Methodology
	1.3 Background
	1.4 Underlying notions of time and space
	1.5 Implementation data model
	1.6 Overview of the rest of the paper

	2 Problem definition
	3 Some initial analysis
	4 Determining whether a given order is consistent with TTC
	5 Preprocessing to derive tighter scheduling constraints
	6 Cost of processing pairs of scheduling constraints
	7 Separation into independent subsets of scheduling constraints
	8 Localizing inconsistencies
	9 Searching for an acceptable order
	10 Evaluating search nodes
	11 Summary, conclusions, and future work

