
Fonts For Forensics

Fred Cohen
President - California Sciences Institute

CEO – Fred Cohen & Associates
Livermore, CA

fred.cohen at calsci dot org
fc at all dot net

Abstract—Like other latent evidence that cannot be directly perceived by people, bit sequences have to be presented through tools.
Presentations of digital forensic evidence often involve the presentation of text versions of bit sequences representing traces of events that
took place within digital systems. This paper is about creating fonts for the examination and presentation of particular classes of bit
sequences presented in particular ways in legal situations. Unlike fonts used for other purposes, fonts for forensics are less about the
beauty of the presentation and more about the tradeoff between readability and being definitive about what is present. In other words, what
you see is what you get, rather than what you see is what looks nice.

Keywords: digital forensics; visualization; depiction forensic fonts

I. BACKGROUND

The presentation of trace evidence for legal purposes has substantially different requirements than for other purposes for
several reasons. This includes, without limit, (1) legal mandates may restrict page formats (e.g., require the use of pleading
paper for certain submissions), (2) subtle differences in presentation may be important for bringing clarity to the information
presented (e.g., the difference between several spaces and a tab character may be vital to the issues at hand), (3) challenges
may be brought based on what is unclear (e.g., how can we tell from what is on this page that what you are claiming about this
text is in fact true?), and (4) what is visible in many fonts may not properly reveal what is in fact present in the digital forensic
data, leading to errors and omissions.

The history of fonts in non-legal uses has evolved over the last 60 years. In the early days of computing, there were two
main technologies for presentation of digital data in readable form; dots and lines. The line technology used continuous media,
such as deflections of a cathode ray in a cathode ray tube (CRT) or movement and up/down motion of a mechanical pen in two
dimensions (the pen plotter). The dot technology consisted largely of light emitting diodes, lamps of various sorts, displays
with fixed shape elements that were on or off at any given moment, and eventually the cathode ray tube with fixed scan
patterns.

The fonts for plotters and line drawing CRTs originally consisted of sequences of line segments drawn one after another
with pen up and down movements to break line continuity. Font designers created an array of different fonts and used coding
schemes for representation, such as the American Standard Code for Information Interchange (ASCII)[1], and Extended Binary
Coded Decimal Interchange Code (EBCDIC)[2]. The dot matrix font designers started using fixed height and width font
elements with dots on or off within the matrix of a single symbol location. Each ASCII, EBCDIC, or other coded symbol was
assigned a font element for display purposes, with the exception of some special characters, such as <backspace>, <space>,
<tab>, and <carriage-return> used for location control within a line, and characters such as <line-feed> and <form-feed> for
movement within the page and movement from page to page. Other byte vales were often unused.

Over time, the dot technology largely won out, with pen plotters remaining still today. As display and printer technology
improved, fonts became far more complex, involving more than on/off values for each location, variable hight and width, and a
wide array of different symbol sets placed within font families. Boldface, underlines, and similar things were added to reflect
the printer methods of using carriage return or backspace and printing over the same location again and again to produce
similar effects, fonts were developed for multiple languages, and ultimately unicode, a 2-byte coding scheme came about to
help handle the explosion in the number of symbols desired within a font. While there are many other codings for bits in
widespread use, the present discussion will be largely restricted to 8-bit fonts representing the ASCII character set. This is for
convenience of space, but most of the results presented apply equally to other coding schemes and can be extended, with
minimal difficulty, to larger and smaller symbol sets and other similar schema, including variable-length bit sequences.

There have been a number of different software packages over the years that have provided different representations of
what normally appears on the screen. For example, and without limit; (1) the "vi" visual and "emacs" editors display control
characters (e.g., control-A) as two or more characters next to each other; (2) Wordstar, and later Microsoft Word and many

other document editors have had presentation modes that depict many, but not all non-printing characters; (3) the program
"hexdump" and other similar programs provide presentations of hex, octal, binary or other coding details, in some cases along
side of a display of the printable representations of many, but not all, of the byte values; (4) fallback fonts [5] provide a method
to display many byte codes that are not previously defined, but fail to depict many non-printable codes such as those for
backspace and delete, and do not provide depictions similar to normally viewable symbols where those already exist; (5) last
resort fonts [6] extant do not present unique representations of all byte or unicode values with many values displayed as; and
(6) many display systems such as packet analyzers show and allow the expansion and contraction of records, fields within
records, and various representations of content in different windows. Furthermore, many of these provide no means to present
the resulting depictions along with other symbols in printouts or on the display, for example so that a newline will present as
the depicted symbol with the next symbol printing on the next line.

To date, we have found none of these that meet the requirements of a font for forensics, in that they all fail in one way or
the other to precisely and accurately present what is present for all byte values, with the basis details contained in the same
symbol depicted within the presentation. Many of these packages also tend to have severe limits on the sequences they can
sensibly present (e.g., the protocol analyzers make assumptions about interpretation that make them better presentations for
what they are intended to depict, but not for what they are not intended to depict, and document formatters tend to not deal well
with arbitrary binary files), don't allow flexibility in the alignment of content, and make underlying assumptions about the
coding scheme that lead to interpretation difficulties by the examiner seeking to understand what is present.

II. REQUIREMENTS OF A FONT FOR FORENSICS

As a general rule, it is highly desirable that displayed symbols from a defined symbol set used for legal purposes be precise,
accurate, and unique. Precision and accuracy of representation are well understood in the legal community and, for the
presentation of scientific and technical evidence, have been highly supported by legal rulings. The uniqueness property is
highly desirable to avoid confusion and allow definitive answers to be given to specific questions that may arise. As a first
attempt to characterize a set of rules and basis for those rules when devising fonts for use in forensic examination and
presentation, the following criteria are identified and the rational explained:

• Each symbol should be clearly different and readily distinguishable from all other symbols
◦ This allows for clarity about which one is identified. If this is not true, then there may be confusion both for

the examiner and for those who review the results, including the lawyers, judges, juries, clerks, and public.
Legal documents are often printed, scanned, reprinted, and go through other similar machinations. While it is
impossible to always preserve all of the characteristics of what was originally present, it is important to
provide enough of a difference between symbols so that these differences are likely to survive multi-
generation copying, scanning, and a wide range of displays.

• Each symbol should be depictable in the same width and height
◦ This allows symbols to be compared to other symbols around them for location. While this may destroy the

appearance of tab characters and other similar presentation values, it provides clarity around issues like
spaces, columns, helps with fixed width fields, such as databases, and allows the column and row to be
clearly seen and specified verbally, which is very helpful for providing accurate verbal testimony in legal
matters. Tab characters may also be depicted as of different widths to the extent that multiple depictions may
be used for them.

• Each symbol should be familiar, with minimal added interpretation, so that it looks similar to what might appear
on a display of the same symbol on a screen or printer in normal use.
◦ The word "help" should still be readable as such by someone who could read it in the normal display mode,

or the font may create more confusion that it removes. Thus the font for EBCDIC will have to reflect
EBCDIC coding, the one for ASCII will have to reflect ASCII coding, etc. There are limits to this today since
existing fonts do not do this very well. For example, there are a wide range of different representations for the
upper 128 symbols in the byte-values of the ASCII character set because, when defined, it was a 7-bit coding.
The variations include a range of different accented characters, symbols used to make boxes and other
graphical components, mathematical symbols, etc.. This proliferation of fonts and enormous variety of
presentations is ultimately problematic, and can only be solved to a limited extent by the production of any
particular font for forensics. For that reason, a forensic version of each font may ultimately be developed to
allow the other properties to be met while producing a closer approximation to this one, or a systematic
approach to generating such depictions, such as that described herein, may be used.

• Each symbol must be displayable and printable so that a <space>, <tab>, <carriage-return>, <backspace>,
<escape>, and other "non-printable" characters can be clearly seen on the printed page and on other displays.
◦ This is necessary because, in many cases the issue in dispute is the non-printable symbols, and even when

they are not in dispute, it makes interpretation far easier when the non-printing symbols are clearly revealed
rather than being hidden. While many fonts provide presentation forms for most of the first 128 symbols
within the 8-bit byte-length symbol set, most of the ones observed in this study have shown a large portion of

the codes from 128-255 as non-printing, essentially unassigned. There are many different options for the
presentation of non-printing characters, and the presentation is a function of the utility for the examiner.

• Each symbol should be able to be depicted so as to self-indicate the underlying bit pattern that produced it, so that
it can be traced back to its original value.
◦ This provides a trace back to the origin of the trace that produced the symbol, and allows the individual

examining it to definitively know the basis for the display provided. For example, the byte code 03 may mean
different things in different contexts.
Similarly, for variable bit-length
codings, the bit sequence generating
the depiction can be meaningfully
shown in context. By depicting the
underlying bit sequence within the
display, the interpretation for a
different context can be made, while
without it, there would be no direct
way for the examiner to know the
basis for the interpretation applied.
This also serves to remind the
viewer that these are traces of latent
evidence.

• Another challenge is that the upper half
(the first bit set to 1) of the ASCII and
many other 8-bit character sets, have a
wide range of different presentations.
The font designer must identify a way to
make these meaningful across a broad
context of uses.
◦ For ease of understanding, except in

cases where there is a clearly
differentiable symbol, the decision
was taken, in this case, to represent
these symbols with emphasis marks
(underlines) or coding indicators
(e.g., FE). This may sacrifice some
utility because it does not display
what actually may have "appeared"
on a display or printer, but this can
be resolved by the use of images of
displays for cases where this is
probative.

A side effect of these criteria is that the depiction
may take more space than the normal display for the
same level of readability, and there will be some
differences from fonts commonly used for other
purposes, such as a more distinct difference between
0 and O, 1 and l, I and |, and so forth.

III. A SAMPLE FONT FOR FORENSICS

As a starting point, a font for forensic presentation
of 8-bit ASCII output was developed, and a tool was
implemented to convert any input byte sequence into
a display using this font. A table depicting this font is
included in Figure 1.

Figure 1 covers ASCII codes ranging from hex 00
through hex FF, with each code corresponding to a printable fixed width and fixed height depiction. The depiction includes
both the area with the commonly used symbol (e.g., A, B, C, etc.), the horizontal line, and the HEX value (mod g) for that
symbol just below it. Thus the representation for HEX code 5Ag is a "Z", with a horizontal line under the “Z”, and the small
digits 5Ag under that line depicting the bit sequence used to generate the depiction.

Figure 1 - A sample forensic font for the US ASCII character set

For this example, this table is converted into a JPEG output file, and using the freely available and widely used "convert"
program, a JPEG file corresponding to each ASCII code is extracted, with each placed in a file named with either an F (for
“full) or an S (for “short”) followed by the two character HEX value followed by the extension ".jpg".

A simple conversion for display may be done by a program that extracts the hex value for each byte in the input file, and
produces an HTML output file consisting of a sequence of image tags, with each image tag corresponding to the JPEG file
associated with the ASCII code of the byte value. A simple version of such a program is provided as a Unix shell script in
Figure 10 later in this paper.

The sample conversion program also provides for specifying a width and height of the displayed output by using HTML
tags, and provides for the addition of new lines after user-defined end of line characters (e.g., 0Ag). For example, the
conversion in Figure 2 is demonstrative (commands in bold).

Figure 2 demonstrates the command ans resulting output, indicating the presence of the space prior to the tab, and the presence
of the carriage return prior to the newline. All HEX values are displayed and differentiable, and the content is relatively
readable. A "small" version of the font is also usable (see Figure 3) to depict all of the characters without including the HEX
digits. In some cases, this presentation is more useful when readability is more important that the byte values involved.

IV. OUTPUT OF A "DIFF" COMMAND

As a case example, a recent forensics case involved the use of the diff command between two sequences. The output of this
command demonstrated that there was a difference in lines of the sequences that appeared to be identical on the output display.
In the actual case, no forensic phone was available, and it wasn't immediately obvious what the differences were. As a result,
some time and effort were wasted, and in a less careful examination, portions of the results might have been missed. By
applying the forensic font®, the difference becomes immediately obvious. The sample shown in Figure 4 demonstrates such a
difference (commands are indicated in boldface). In this case, the displayed output is presented next to the input, and typically
appears in a separate windows (since the display is not available in the command terminal window.

>echo "This is a test^M
 of the program "
This is a test
 of the program
>!! | ff

Figure 2 - A depiction using a forensic font.

FF>diff test1 test2

1,4c1,4
< This is a test
< This is another test
< This is a different test

< This is still another test

> This is a test
> This is another test
> This is a different test
> This is still another test
FF>diff test1 test2 | ff

Figure 4 - the output of a "diff"
command using a forensic font

V. AN EXAMPLE FROM A DATABASE FILE

Another example where forensics font is useful, is in
depicting and reviewing the contents of a fixed width file, or
other similar database content. For example, in examining a
binary file that is part of the storage of the OSX Spotlight
system, a system used to allow contents of the Macintosh to be
rapidly searched by the user, the file format is not immediately
apparent, and there are various binary characters present
between strings. By presenting these results using a forensics
font, the database structure can be seen with some additional
clarity, albeit the use of such a font does not eliminate all
uncertainty. Figure 5 provides an example of the depiction of a
WK4 formatted file (a worksheet from a spreadsheet program).
In this example, the width of the display was adjusted until the
characters aligned. The result is that using the visual capacity
of the human observer, structure alignment of fields within this
file can be readily ascertained in a matter of seconds. Different
portions of the file might have different periodicity, and further
adjustments can be made on a region-by-region basis to gain
insight into the content and to allow further examination to
proceed. Using this tool, it's often easy to find delimiters, and
with those delimiters, a newline or table column can be placed
before or after them to support visualization. In this instance,
the fixed width of the forensic font is particularly helpful in
finding underlying data structure. However, when there is
flexible data structure, additional tools may be helpful. As an
example, using a table depiction may allow table areas to be
differentiated by the presence of characters within the input

file, with table rows, columns, background
colors, or other visualization methods used to
differentiate different symbol sequences. Again,
by dynamically changing widths, using a fixed
font width, and display of all sequences and
character codes, the examiner can rapidly detect
structure, pick that structure out, and undertake
more detailed examination based on the
structure. This then leads to the use of
visualization for interactive trace typing and the
resulting interpretation.

VI. AN EXAMPLE FROM A PRINTOUT

Another quite common example occurs when
attempting to print files. Many printing
mechanisms perform alterations on the original
input in order to depict it within the output
media, as well as for the purpose of pleasant
appearance. While this is certainly useful for
many purposes, in presenting content of forensic
value, it is often more important for the output to
precisely and accurately reflect the input, and far
less important that the output look pleasing.
Among the more common problems faced by the
examiner looking at a printout, are (1) the
misalignment of tab stops; (2) the kerning of
characters and spaces so as to make the actual
number or presence of spaces unclear, and the
alignment of characters from line to line uneven;

Figure 5 - A database file displayed with "ff"

Figure 6 - PDF printer formatted output

(3) the removal of individual or consolidation of multiple blank lines; (4) the continuation of characters from one line into
subsequent lines when the depiction is not wide enough to fully display the characters in a line within a single line (wrap
around); (5) the removal, or different uses, of nonprinting characters; and (6) multigeneration copying and loss of fidelity.

Each of these issues produce difficulties for the examiner both in understanding and explaining the printout, and difficulties
in the trier of fact and legal counsel in understanding the testimony. Figure 6 (slightly redacted) contains the output as
presented in testimony in a legal matter.[3] Output like this is problematic in terms of identifying precisely what byte
sequences were present within the original content, and more specifically, it makes it difficult to determine where the header of
the email sent stops, and where the body of that same email begins. While some experts may claim to be able to make this
particular determination without the facts, this is unwise, especially in cases like this one ,where forgery was claimed.

In particular, and without limit; there is what appears to be a blank line after the line that appears to end in "d=yahoo.com";
another such appearance after the line that appears to end in "Message-ID;"; another such appearance after the line that appears
to end in "yahoo.com>"; and there are a number of lines that appear to start with sequences of characters with no leading
blanks, and that do not have a ":" prior to the first blank area in their lines, indicating that they are not continuation lines from a
previous header, and that they are not themselves valid headers for an email (e.g., the apparent line that appears to read
"[68.142.206.155])").

Many readers may shrug as this example, because, to them it may be obvious that these are cases where wrap-around and
printer attempts to not have words wrap around from line to line cased these depictions. But these are assumptions that, in
forensics matters, may be critical issues, and these assumptions may not in fact be true. In fact, in this particular matter, the
output from Figure 6 was placed in front of an examiner who could not definitively authenticate what was actually present.
One of the parties was asserting that this particular claimed email was a forgery. One of the claims of forgery surrounded the
non-printable symbols contained in the messages and formats of headers.

Figure 7 presents the header portion of the actual file (slightly redacted) using the forensic font (short form). In this case, it
is immediately clear that there are a series of leading space characters followed by the content of the header, that <CR><LF>

Figure 7 - The same content depicted in the forensic font reveals the true nature of the evidence

ends the lines, and that the apparent end of the header area in the PDF depiction from Figure 6 does not accurately reflect the
lack of a second linefeed at that point in the original content. In testifying with regard to the output partially depicted in Figure
6, the expert had to indicate that the depiction was unclear and that recollection alone would have to be used to identify what
was present in the header portion of this message. Figure 7 is definitive in this regard.

In Figure 7, spacing between depicted font elements is used to provide clarity around symbol separations. The fixed width
font combined with the depiction of all bytes provides clarity around what is actually present, even when the output results are
wrapped around, and even when, as in large figures placed in smaller printouts, the display is degraded.

By placing depictions such as Figure 7 in evidence, optionally along with other depictions that provide better human
readability, the problem of the forensic examiner making guesses about what might be present is largely eliminated and precise
results become immediately evident. Of course this does not eliminate all of the potential misinterpretations or assumptions
that might be made by the examiner, but it certainly may eliminate those related to the identified sorts of errors.

VII. A TOOL TO APPLY FORENSIC FONTS

A tool was developed to experiment with forensic fonts, and in particular, for use in matters such as those identified herein.
The name of the tool is "FF", and it is available for free download from http://all.net/. This particular implementation was
written in java and is provided as a "jar" file with an executable and the files associated with the fonts identified herein. It
provides a graphical interface to allow the user to display a file in the forensic font and to manipulate the depictions for the
sorts of examples described herein. This includes, without limit:

• The presentation of a unique depiction for each of the eight bit ASCII character codes.
• The ability to resize and reshape the output window for ease of alignment.
• The ability to display bytes starting at any location within the input.
• The ability to define end of line characters for the depiction.
• The ability to select between full fonts and smaller versions of that font without the hex digits.
• The ability to resize the font as depicted.

Using this or other tools provided herein, all of the depictions shown in this paper were generated, screenshots were taken,
and those screenshots were used for the presentations.

VIII. VALIDATION OF THE TOOL

The key properties of a useful tool for forensic
fonts include, without limit:

1. The tool must not alter original writing.
2. Displayed information must be complete.
3. Displayed information must be accurate.

While additional properties might be desired from
a user standpoint, these are the key properties that
must be verified and validated for forensic soundness.

Property 1 is true of the current tool in a limited
sense because it takes input from the standard input,
files and the user, and produces output only to the
screen, except in the “print” operation used to produce
PDF output files. It has no other code that does file
output.

Property 2 cannot be proven in the same sense as
Property 1. In fact, we know that in general, Property
2 cannot be true because the input is of indeterminate
length, and the design of this tool is such that it must
store everything it is able to display. Thus, for some
input length, the displayed information will not be
complete. The normal behavior is an error message
indicating inadequate memory, and the program does
not continue to operate normally in the sense of
responding to user input. This has been validated by
testing.

Property 3 also cannot be proven in the same sense as Property 1. While we can validate that for provided inputs, outputs
accurately reflect the desired behavior, it is infeasible to test all possible input sequences and to verify the output in all such

Figure 8 - Sample validation output sample

cases. To do so would require, at a minimum, a validation of the underlying operating environment, and this is infeasible. Thus,
the best we can do, is to take a testing approach, and validate the available code to the extent feasible for the purpose.

Several tests were made based on systematic generation of known byte sequences and verification that the displayed
sequences matched the generated ones. Because of various peculiarities of the "java" language (i.e., not having unsigned byte
values, various display limitations, storage limits, and rendering approaches) the validation runs produced a number of
anomalies that were corrected prior to release.

The “ff” tool is depicted in the screenshot provided in Figure 8 and throughout this paper. Figure 8 shows the output of a
file generated for depicting the ASCII character codes, beginning with the 2-character HEX value for the byte, a space, the
string c= followed by the printed character, a space, the decimal value of the byte, a space, the octal value of the byte, a space,
the HEX value of the byte, and an end of line character. This depiction begins a new line every time the end of line character is
seen. Validation of the locations of characters within the file, the size of the file, the accuracy of the depictions to the table, and
the hex values shown have been made. A similar input sequence containing all bytes in increasing order has been used to
generate tables similar to the one depicted in Table 2, and to produce different alignments of this and other tables. The input to
the output in Figure 9 was produced by the C program:

main(){char i;int j;for (j=0;j<256;j++) {i=j;write(1,&j,1);}

Accuracy is, of course, relative to specifications. Note that the "From:" "To:" fields are inclusive (i.e. the display in Figure
9 goes "From" the "1st" byte and "To" the "256th" byte. Thus the number of bytes displayed should be the "To" value less the
"From" value plus 1 (i.e., 256). It is also possible to request a display of 0 bytes by inputting a "To" value less than the "From"
value, and in such cases, no bytes will be displayed and the "To" value will be one less than the "From" value. It is also
possible to request regions of the input outside of the actual range of the input. In such cases, the program corrects the input by
displaying only from the start or to the end of the input sequence. These have also all been tested in the current
implementation.

Validation of such visualization tools are problematic in several ways. In particular, the thing being validated about them is
the cognitive properties associated with the human observer of the output as it relates to the actuality of the latent input traces.
Furthermore, the examination of results requires that the human examiner view and interpret the validation results. Validation
may work on one system with one sort of display and fail on a different system with a different display because of properties
that make for better or worse readability. Different font sizes may conceal details that end up misinforming the examiner
because it is too hard to differentiate between appearances, and proper performance under test conditions does not guarantee

Figure 9 - The ASCII character set generated with a C program as displayed by FF

proper performance under real world operation. Every tool has its limits, and the "FF" tool provided as an example is limited in
the size of input file it can use, the size of display it can handle, and its performance is poor for large displays with small font
sizes. Nonetheless, it has proven useful in an increasing number of cases where accurate depiction is meaningful to the matter
at hand.

IX. PRODUCING RESULTS

Production of results from forensic fonts may come, without limit, in the form of pieces of paper, presentations using a
computer display screen, or in files provided in digital form. A major goal of the use of forensic fonts is that they be equally
informative in all such forms. The production of digital forensic evidence, which is latent by nature, requires that the tools used
to produce it are reliable and suited for the purpose, that the methodology meets the requirements of scientific rigor, and that
the methodology be properly applied.[4] If the production is done with inadequate resolution to make the fonts readable or if
the presentation method fails to properly display all of the symbols in proper sequence and placement, the use of forensic fonts
will not alter those conditions. However, because the forensic font is self-indicating as to the underlying bit sequence present in
the trace, the content
should be clear to the
properly skilled observer.

An alternate approach
for presenting and printing
larger volumes of material
in the forensic font uses a
Web browser and the
hypertext markup
language (HTML). Figure
10 shows the code for this
approach. This example
shell script uses the
"hexdump" program and
text replacement to create an HTML file that is about 20-30 times as large as the original content and that causes the Web
browser to display the result by rendering a series of graphical files aligned so as to depict the desired results. This particular
script has not been verified as to the criteria above.

Web browsers typically have print functions, and on some platforms, these functions allow the output to be printed or saved
as portable document format (pdf) files or postsript (ps) files. In these systems, this process may be used to produce a printable
version that is relatively portable and can be sent electronically from place to place. PDF files are commonly used in legal
productions within the United States today, and as a result, this may be a useful solution for the time being.

The present version of the Forensic Font®

program can be run for experimental purposes
by downloading it from http://all.net/. It
includes PDF output and indication of the
location in the original content where each
portion of the output was sourced. This helps
tie back the display to the original writing that
ultimately generated it. Figure 11 shows a
simple example of this output for the “echo”
command issued in Figure 2. Note that the first
column indicates the byte location of the byte
before the content in the remainder of that row,
that date, time, user identity, file location (“-”
indicates standard input), and other related
provenance details are provided for the purpose
of authenticating the result generation process. The PDF output also indicates how to reproduce the output using a command
line so that precise parameters used for output can be reused by independent parties to produce results that should be identical,
except for the provenance details, which will differ for each use. This implementation includes 6-bit, EBCDIC, and ROT13
font sets so content may be viewed using different encodings depending on context. Various formatting capabilities are also
helpful in producing output aligned for readability, colorization, and the ability to display portions of sequences. For example,
different portions of files may be extracted and displayed in different formats and fonts indicative of the examiner's
interpretation of how the depiction might best be understood by the viewer. At the same time, all of these alternative
presentations retain the fundamental properties identified earlier, so that the underlying content upon which the depiction is
based remains present and available to be examined by anybody reviewing the output.

echo "fixer [FS] S0A.jpg test 0A 12 32"
echo " Full or Small - input file - output file (.html) break [width [height]]"
Font=$1;shift;InFile=$1;shift;OutFile=$1;shift;Break=$1;shift
if test "X$1" == "X"; then WL="";
 else WL=" width=\"$1\"";shift
 if test "X$1" == "X"; then WL="$WL"; else WL="$WL height=\"$1\""; shift; fi;fi
for i in `hexdump -v $InFile | toupper |
 while read a b; do echo $b;done`; do

echo -n "";
if test "$i" == "$Break"; then echo "
"; fi; done > $OutFile.html

Figure 10 - A simple forensics font tool for use with a Web browser

Figure 11 – Example PDF output from Forensic Font.

X. SUMMARY, CONCLUSIONS, FURTHER WORK

There are clearly limitations associated with forensic fonts. These include, without limit, coping with alignment such as tab
stops, differences in appearance between the forensic font display in the normal display seen by user, the additional
information present in the forensic font that makes cognition of content somewhat slower, and the fact that one size simply
does not fit all. Nonetheless, it appears that forensic fonts are a valuable tool for more rapidly understanding the byte sequences
present, for reducing content miss and make errors in interpretation, and for presenting forensic output to others when the
underlying bit sequences are relevant to the issues in the case.

In the current implementation, the mechanisms used to transform and display are rudimentary, and were designed primarily
to demonstrate the concept. While they are useful in working on cases, substantial improvements in both the fonts and the tools
will be helpful in bringing this technology to more widespread use. In addition, the creation of fonts that are directly usable
within browsers, terminal windows, document editors, and throughout the forensic process and tools, will substantially
improve the outlook, both for accurate examination, and for improvements in the presentation of digital forensic evidence. The
creation of forensic fonts for other character sets will also be helpful. For example, the implementation of EBCDIC, ROT-13,
and SIXBIT fonts were a simple matter, and they are helpful in examining exchanges and stored information in those
representations. Similarly, other common representations, such as Unicode, seven bit ASCII with parity, etc. would be useful,
and more generally, the capacity to create fonts sets for a wide range of different situations with relatively little effort would be
helpful so that examiners can create font sets on-the-fly for presentation of specific data for specific uses.

Database an dother structured and unstructured interpretation of other sorts would also be quite helpful, as would fonts for
depicting data values such as integers, stored timestamps, and other similar representations of multibyte or variable bit-length
symbol sets. While some of these might be more prudently implemented in other ways, the ultimate underlying question of
formats for accurate and precise presentation of digital forensic data remains a worthy challenge, and this effort with regard to
forensic fonts is only the beginning.

REFERENCES

[1] The American Standard Code for Information Interchange (ASCII), standard X3.4-1963, American Standards Association, June 17, 1963

[2] Extended Binary Coded Decimal Interchange Code (EBCDIC), for details see the Web site at URL: http://www-
01.ibm.com/software/globalization/cdra/appendix_a.jsp

[3] Rose v. Albritton, Superior Court of the County of San Francisco, Case No.: FDV-09-806677, July 14, 2009

[4] Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 125 L. Ed. 2d 469, 113 S. Ct. 2786 (1993) and subsequent rulings dominate in US Federal
cases. Frye (Frye v. United States, 293 F 1013 D.C. Cir, 1923) may apply in many states for non-Federal cases.

[5] The Unicode BMP fallback font (http://www.sil.org/)

[6] Last resort fonts at http://developer.apple.com/textfonts/LastResortFont/LastResortTable.html and include many values depicted as identical symbols.

	I. Background
	II. Requirements of a font for forensics
	III. A sample font for forensics
	IV. Output of a "diff" command
	V. An example from a database file
	VI. An example from a printout
	VII. A tool to apply forensic fonts
	VIII. Validation of the tool
	IX. Producing results
	X. Summary, conclusions, further work

