Attribution of Messages to Sources in Digital Forensics

HICSS - Jan 7, 2010

Dr. Fred Cohen
President - California Sciences Institute
CEO – Fred Cohen & Associates

C

Outline

- Background of the speaker and subject
- Attribution
- Limits of current methods
- Attribution with higher certainty
- Your turn!

California Sciences Institute Your speaker

Education:

- B.S. Electrical Engineering (C-MU '77)
- M.S. Information Science (Pitt '81)
- Ph.D. Electrical Engineering (USC '86)

Experience:

- >30 years of information protection R&D, design, engineering, testing, implementation, and operation
- >20 years since first digital forensics case
- CEO Fred Cohen & Associates
 - Enterprise information protection architecture
 - Digital forensics for high-valued legal cases

CalSci

- President California Sciences Institute
 - Starting doctoral classes in 2010-01?02?
- M.S. And Ph.D. Program in National Security
 - Technical aspects of these fields
- M.S. In Advanced Investigation
- Ph.D. In Digital Forensics
 - The first Ph.D. program in Digital Forensics in the United States
- calsci.org

California Sciences Institute What does he know about the subject?

- Knowledge, skill, experience, training, education FRE 701-6
- Knowledge, Skills, and Experience:
 - [Countering] attribution of messages to sources
 - Rose v. Albritton, Superior Court of the County of San Francisco, Case No.: FDV-09-806677, July 14, 2009 (testified as an expert)
 - [United States v. Bayly, et. al., United States District Court for the Southern District of Texas, case no. Cr. No. H-03-363. 2004-10-25 (testified as an expert)]
 - [Beyond Systems, Inc. Plaintiff, v. Kraft Foods, Inc., et al., Defendants. Case No. 8:08-CV-00409, currently in United States District Court for Maryland]
 - [ASIS Internet Services, v. Optin Global, Inc., et. al., US District Court Northern district of California Case No. C-05-5124 JCS, 2008-01-07]
 - Susan Polgar v. US Chess Federation et. al. (4 cases including) US District Court –
 Northern district of Texas C.A. NO. 5-08CV0169-C
- Education:
 - B.S., M.S., and Ph.D. in relevant field

California Sciences Institute Basics of traces

Traces

- FSMs take digital inputs and state and produce digital outputs and state
- Some of the outputs may be stored and/or captured
- The stored/captured outputs available to the examiner are called "traces"
- Traces are the result of some process
 - Many possible processes may produce any particular trace
 - What process produced the traces?

California Sciences Institute Basics of messages

- A message is sent from sender to recipient(s)
 - The message is encoded as a sequence of bits
 - The sending of those bits normally leaves traces
 - Some of those traces may be available to the examiner
- Examples:
 - IRC, IM, AppleTalk, etc. messages
 - Newsgroups, electronic mail
 - FAX messages, voicemail
 - Twitter, SMS, etc.
- Who actually sent them? How do we know?

California Sciences Institute Basics of "forged" messages

- Almost anyone from almost anywhere can send a bit sequence into the Internet (e.g.,)
 - Simple Mail Transfer Protocol (SMTP) protocol to a Mail Transfer Agent (MTA)
 - helo joe.com
 - mail from:<k@j.l>
 - rcpt to:<o@y.k>
 - data
 - (the sequence of bits for headers/body)
 - —
- Did the person k@j.l send this to o@y.k?

Outline

- Background of the speaker and subject
- Attribution
- Limits of current methods
- Attribution with higher certainty
- Your turn!

California Sciences Institute Attribution as causality

- To attribute message M to person P, we are, in essence, showing that P caused M
 - Correlation is not causality
 - Causality demands certain things
- Example scientific requirements:
 - Cause comes before effect
 - Don't forget the "speed of light" in the media
 - Digital systems have computational complexity as an added "speed of light" issue
 - Time precision, accuracy, reliability, etc.
 - A causal chain from cause to effect is needed
 - Before does not imply because

California Sciences Institute Things people have tried

- Level 1, 2, 3, and 4 attribution
 - 1: Direct cause (next computer over)
 - 2: Indirect cause (the computer that originated it)
 - 3: Who did it (the person at that computer)
 - 4: What did it (the organization behind it)
- Authentication technologies
 - Biometrics (2% false positive for 1/1000 actors)
 - Usage patterns (e.g., Web click patterns)
 - Textual analysis (e.g., your phrasology)
- All of these assume no malicious actors/Trojans

- The need for a scientific basis
 - FRE 701-6?
- The standard of proof
 - Preponderance of the evidence (>50%)
 - Beyond a reasonable doubt (>??%)
- Issues of admissibility
 - Of evidence
 - Of expert presenting results
 - Of methods used and results produced

California Sciences Institute

Outline

- Background of the speaker and subject
- Attribution
- Limits of current methods
- Attribution with higher certainty
- Your turn!

California Sciences Institute Problems with attribution today

- End-to-end authentication approaches
 - Are rarely present or used
 - Depend on trustworthy infrastructure and application
 - Depend on control over keys and key management
 - Are not used by those trying to avoid attribution
- Subverted computers are commonplace
 - Several current worms infest millions of computers
 - Many computers have many different infestations
 - In most forensics cases, all possible subversions cannot be sought or detected

California Sciences Institute More attribution problems

- Network traffic mechanisms conceal sourcing
 - Proxy servers, gateway computers, NAT gateways, firewalls, large-volume aggregated service providers, virtualization, load balancers, etc.
 - Mobility and highly available distributed access, wireless, coffee shops, Internet cafes, building area networks, etc.
 - Identity information is widely varied across and between these networks and systems, and rarely based on a trusted mechanism or association to an actual person.

California Sciences Institute More attribution problems

- Simple forgeries are easy (see above)
- Means, motive, and opportunity exist
 - Means available to anyone able to contact content or systems involved (anyone in the Internet)
 - Motive is case-dependent classic human motives
 - Motivated actors vary widely, and include w/o limit:
 - Parties to the action and their friends or enemies
 - Innocent third parties through errors or omissions
 - Competitors wishing to shift blame
 - Opportunity ∃ for {originator, intermediary, recipient}

California Sciences Institute Common claims and problems

- Claim: Message portions are self-authenticating
 - Anyone can put any sequence into any message
- Claim: Form and style indicate "authorship"
 - If I quote Mark Twain, did he originate the message?
 - If it sounds like Twain, is it necessarily Twain?
 - Does the use of "youns" mean I am from Pittsburgh?
- Claim: Presence of common sequences
 - Little current scientific basis for optimal parsing or identification of relevant sequences
 - Even if common authorship, that does not imply common message origination (I forward your tweet)

California Sciences Institute Common claims and problems

- Claim: Similar group of message (content)
 - For a corpus of 4053 messages, 7531 similarity groupings were found...
 - What are the metrics of similarity and what do they mean?
- Claim: Similar timing or physical properties
 - Often useful fur ruling out attribution (can't produce that result in this much time)
 - Cumulative effect of ruing out possibilities may meet the standard of proof

Outline

- Background of the speaker and subject
- Attribution
- Limits of current methods
- Attribution with higher certainty
- Your turn!

California Sciences Institute Two classes of approaches

- Consistency and inconsistency
 - Use the redundant nature of traces, events, and claims to determine consistency
 - The number of possible traces, consistencies, inconsistencies, and techniques is too large to practically exhaust
- Legal process to gain additional records
 - Subpoena additional evidence
 - Examine for consistency

California Sciences Institute Unavailable records

- The "chain" from here to there
 - Missing links may be unavoidable
 - Uncooperative parties
 - Destroyed records or records never produced
 - Legal process may reveal other related traces
 - Repeat till causal chain completed
 - Incomplete causal chain may remain
 - Does it meet the standard of proof?
 - Can you show the first M and last N steps?
 - What subset of steps can be shown?

California Sciences Institute Automated analysis

- Volumes dictate automation
 - 100,000 messages is no longer rare in cases
 - Millions of messages are still rare today
 - Many techniques defy manual application
- Tools must meet legal criteria
 - Scientific methodology as evidenced by peer reviewed articles in the scientific literature
 - Proper application of methodology by tools and those who use those tools
 - Testing, calibration, and error rates evidenced

California Sciences Institute Tools for facilitating analysis

- Extract message-like sequences from traces
 - Traces often in the form of collections (mbox)
 - Messages may have semi-structured "headers"
 - Messages generally have content (bodies)
 - It is often helpful to generate derived traces
 - Traces derived from original traces
 - Reformatted / normalized to some standard
 - Linked back to the original traces
- Associated structured content
 - Headers have {"key","value"} pairs ({From:, ...})
 - Message headers formed by identified process

California Sciences Institute More tools for messages

- Reception analysis
 - Time sequences of events revealed (use UTC)
 - Often traces from multiple locations
- Histogram analysis
 - Sorting by "hop" into "time slots" reveals flow(t)
 - Activity (distance) can reveal processes
 - Anomalies may become apparent in flows
- MD5 and similar "fingerprint" analysis
 - Allows duplicates to be found
 - Can be applied to portions or entire messages
 - May reveal extremely similar sequences

California Sciences Institute Still more tools for messages

- Correlation
 - List all cases of A in B AND C in D (e.g.,
 - From "joe" AND Date "Tue"
 - From IP address AND Message-ID: KKK[0-9]+
- Match-correlation (n² time and space)
 - Identifies how many lines are shared between each pair of messages / headers / bodies
 - Finds near-duplicates and similar "related" messages with closer matches indicating more similarity
 - Finds exact copies and "imperfect duplicates" in which duplicates are slightly altered

California Sciences Institute Still more tools for messages

- Reception tree analysis (n log(n) time)
 - Shows the tree structure of how messages arrived at their final destination
 - Reveals internals of infrastructures used
 - Reveals common delivery paths and quantities
- N-tuples (n² time and space)
 - General purpose grouping of messages into sets with commonalities
 - Greatest-common-factor (GCF) analysis based on defined sets of factors
 - Creates different groupings of messages based on sets of factors

California Sciences Institute What tools reveal

- Basic goal is to identify [in]consistencies
 - Type C (trace to trace)
 - Different content, identical "unique" identifiers
 - Identical headers, different bodies
 - Multiple messages, identical "unique" identifiers
 - Unrealistic or inconsistent travel rates
 - Over- or under-consistent delay times
 - Ordering errors and header sequence errors
 - Common content with different sourcing / delivery
 - Integrity flaws like mismatched digital signatures
 - Travel patterns inconsistent with normal process
 - Type D (trace to event)

California Sciences Institute What tools reveal

- Basic goal is to identify [in]consistencies
 - Type C (trace to trace)
 - Type D (trace to event)
 - Time zones inconsistent with asserted locations
 - Damages claims inconsistent with timings and volumes
 - Commonality claims inconsistent with traces
 - Consistency with non-claimed event sequences / inconsistencies with claimed event sequences
- Without the tools, these sorts of inconsistency are hard to find in high volume cases
- With them, inconsistencies may not be found

California Sciences Institute Recent case examples

- Tools now used for "standard processing"
- In the last year they have revealed:
 - Fabrications of collections (e.g., mailbox files not created by "normal business practice")
 - Fabrication errors (e.g., duplicates with slightly varied headers, identical headers different bodies, multiple "unique" Message-ID entries)
 - Similarity groupings (e.g., identifying a complex header sequence in 64 out of 200,000+ messages, 63 previously attributed to an unattributed suspect, and the 64th which links to known accounts and behaviors of a known suspect)

California Sciences Institute Conclusions

- At the end of the day, the surety has to meet the legal requirements based on the case at hand
- Existing methods individually are of only limited power for establishing causality
- Consistency analysis combined with causal chains and automation makes far more complex attributions with far higher surety feasible
- However:
 - All information examined to date is consistent with X and inconsistent with other identified Y
- Is not "proof positive"

C

Outline

- Background of the speaker and subject
- Attribution
- Limits of current methods
- Attribution with higher certainty
- Your turn!

California Sciences Institute

Thank You

http://calsci.org/ - calsci at calsci.org http://all.net/ - fc at all.net