

The need for and progress in science for information protection and digital forensics University of Pretoria – April 11, 2011

Dr. Fred Cohen President - California Sciences Institute CEO – Fred Cohen & Associates

Outline

- Introduction the basics and the need
- Science as a social activity
- A different physics an attempt at a theory

Fred Cohen & Associates

California Sciences Institute Your speaker

- CEO Fred Cohen & Associates / President CalSci
 - Enterprise information protection architecture
 - Digital forensics for (usually high-valued) legal cases
 - 501(c)3 research and educational institution
 - M.S. Advanced Investigation / Ph.D. Digital Forensics
- B.S. EE (C-MU '77), M.S. Info Sci (Pitt '81), Ph.D. EE (USC '86)
- >30 years of information protection R&D, design, engineering, testing, implementation, operation, etc.
- >20 years since first digital forensics case
- POST certified instructor in digital forensics, Guest lecturer FLETC, PMTS Sandia National Labs, etc.
- >>100 peer reviewed publications, many conference talks, ...

California Sciences Institute The basics

- Science is about causality
 - A scientific theory:
 - C \rightarrow^{M} E: Cause(C) produces Effect (E) via mechanism M
- The scientific method
 - Identifies the criteria for rejecting (or accepting, for now) a scientific theory
 - Hypothesize $C \rightarrow^{M} E$
 - Perform experiments to refute
 - Failure to refute \rightarrow confirmation
 - Enough confirmations and hypothesis becomes theory
 - One refutation and theory becomes refuted (wrong)

- But it may still be useful for limited cases

Fred Cohen & Associates

California Sciences Institute Example science

- Hypothesis: The World is flat
- Experiment: Keep sailing and see if you come back
 - Lots of them didn't come back... confirmed
 - So many didn't come back → theory
 - One made it around...
- Refutation the theory was refuted (wrong)
 - But it may still be useful for limited cases
 - Do you account for the curvature of the Earth when you design a building? Or do you assume the Earth is flat?

California Sciences Institute A problem with science

- Scientists are people too
 - People make mistakes → Science makes mistakes
 - Science corrects big mistakes and does it slowly
 - When someone notices "something wrong"
 - When the wrong thing is important enough to someone
 - Scientists will check it out, refute the old, propose new
 - Old workable science is still useful (F=ma)
 - People lie → science examines refutation carefully
 - Confirmation not so much because it's not surprising
 - A new result that's important will get checked out
 - Once you lie in science nobody will likely believe you again – and your old work will be largely discounted

California Sciences Institute Science (protection & forensics)

- Is digital forensics important enough to care?
 - It sends people to jail / kills / frees them
 - It forms a framework for the legitimacy of the courts – and civil society
 - The social contract fails if science does not aide justice
- Is information protection important enough?
 - We have created a highly dependent society
 - Advanced society may literally collapse without properly functioning information technology
- I think it's important enough, so I care... do ohen & Associates

California Sciences Institute But suppose we don't care?

- Without a reliable $C \rightarrow E$ model
 - We make a lot of mistakes (which happens anyway)
 - Those mistakes don't get corrected
 - They may be replaced by other mistakes
- How's that working out for you?
 - We pay too much and get too little
 - Snake oil sales prosper in the marketplace
 - We still do ridiculous things we did 25 years ago
 - Change your password how often?
- A scientific approach will help us get to "right"

California Sciences Institute

Outline

- Introduction the basics and the need
- Science as a social activity
- A different physics an attempt at a theory

Fred Cohen & Associates

California Sciences Institute Consensus: Digital Forensics

- The "scientific community" in digital forensics lacks consensus even around the very basic notions
- Compared to the consensus on human activity producing global climate change (86% or more) the basic notions of digital forensics are not at consensus levels:
 - Digital evidence is made of bit sequences.
 - You can observe bits without altering them.
 - You can duplicate bits without removing them.
 - Digital evidence is trace evidence

California Sciences Institute Challenge!!!

- There are only about 500 peer reviewed articles on digital forensics in the literature
 - Terminology is not widely agreed or uniformly applied – lots "made up"
 - Testability, validation, and scientific principles have not been widely addressed
 - The small corpus of published results limits the scientific basis for statements
 - Claims w/out supporting experiments common.
- "The State of the Science of Digital Evidence Examination" - 2011 IFIP DF conference

California Sciences Institute Consensus: Info. Protection

- We have a reasonably consistent set of words
 - Most CISSPs understand most of the words I use
 - There are 10,000+ peer reviewed articles
 - ~5 real journals (outside of cryptography)
 - Many peer reviewed conferences
 - Lots of funding all over the world
 - Testability, validation, and scientific principles have not been widely addressed
 - Claims w/out supporting experiments common
 - Lots of long-term mistakes and rote approaches
- Example: most of my submissions get accepted

- Many w/out comment (good for me, not for

California Sciences Institute Info Pro Big Problems

- There are almost no scientific experiments
 - No widely used theory of measurement
 - Almost no useful metrics
 - Almost no scientifically valid experiments
 - We don't even have a physics
- A big part of the problem:
 - We have a purely mathematical basis
 - And it ignores the people and processes
- A big part of the solution:
 - Social sciences integrated with artificial sciences

California Sciences Institute

Outline

- Introduction the basics and the need
- Science as a social activity
- A different physics an attempt at a theory

Fred Cohen & Associates

- Some basic physics of the digital world:
 - Digital data is entirely sequences of bits
 - The atomic unit is the "bit"
 - Nothing smaller (finite granularity)
 - No longer dealing with the digital evidence
 - Smaller than a bit it's physical evidence
 - Finite bit granularity \rightarrow finite time granularity
 - Bits can only store traces (of time) at finite granularity (a finite bit sequence)
- Normal space: infinite granularity space/time
- **Digital space: finite** granularity space/time Fred Cohen & Associates California Sciences Institute is a 501(c)3 non-profit educational and research institution. We do not discriminate in our hiring, admissions, offerings, or in any other way except by ability to do the work and learn the material.

California Sciences Institute Challenge!!!

- Finite granularity \rightarrow time is a partial ordering
 - A before B (A<B), A after B (A>B), Can't tell (A≈B)
 - Traces as recorded are subject to Δt
 - What is the Δt for your traces / time stamps?
 - Is the claim a sequence of events?
 - Don't know $\Delta t \rightarrow don't know the sequence!$
- Precision vs. accuracy
 - Trace time stamps are subject to delays, etc.
 - They look precise (2010-11-02 03:34:54.455)
 - But often aren't as accurate (off by 9 hours)
 - Mixed granularity misleading as to sequences
 - Some Windows time stamps at 1-day granularity

- Observation without alteration:
 - Normal space: Not possible to observe a physical particle without altering it
 - Digital space: Possible to observe a bit without altering it - because the media storing bits is highly stable and engineered for this purpose.
- Duplication without removal:
 - Normal space: No "exact" duplicates. When we steal something, the original is gone.
 - Digital space: Exact duplicates: We can "steal" bits leaving the original intact and unaltered.

California Sciences Institute

Challenge!!!

- Courts have held bit-for-bit copies acceptable as original writing for digital evidence - BUT:
 - A scientific basis is required to demonstrate that the duplication was properly done
- FRE 702: sound methodology properly applied
 - An underlying digital physics
 - Proper use of properly functioning tools
- We don't have a widely accepted and uniformly applied way to do this today
 - Each instance is a possible challenge

- DFE is "trace" evidence
 - Finite State Machines (FSMs) execute
 - They produce outputs that may get stored
 - Stored outputs are "traces" of the event sequences in the FSMs
- DFE is NOT "transfer" evidence
 - Normal evidence: Two objects touch → each leaves part of itself with the other
 - Digital evidence: systems in "contact" with each other, do NOT leave parts

 Systems <u>may</u> independently produce (different) traces as a result of "contact"

California Sciences Institute Challenge!!!

- Most digital forensics folks are unaware of the history of <u>natural world</u> forensics
 - Natural world: 1900 or so, <u>"transfer"</u>
 - Transfer is the scientific basis for trace evidence
- There is <u>no transfer in digital evidence</u>:
 - The scientific basis for evidence acceptance in the natural world does not apply
- But there are still <u>traces</u>
 - Products of the execution of FSMs
 - The basis for admission and use is different
 - Does your expert understand these principles?

- FSMs have "perfect" forward predictability.
 - Given an FSM, initial state, and input sequence, all state and output sequences are precisely defined

Thus digital space "converges" with time

- Normal space admits to only one past but many possible futures.
- Normal space "diverges" with time!
- Many FSMs and input sequences produce identical output sequences
 - Traces do not uniquely identify how they came to be!

Fred Cohen & Associates in

California Sciences Institute Challenge!!!

- Suppose an asserted expert says:
 - Based on digital traces alone, a specific event sequence definitely happened
- But digital space converges with time:
 - Traces do not uniquely identify how they came to be!
- This is not a valid expert opinion
 - And it puts the expertise in question
- Be careful... precise wording is important
 - If you don't understand the physics, its easy to screw up

California Sciences Institute Information physics details

- Digital space converges with time
 - FSM: (I,O,S,m:{IxS}→{O,S'}) IF |I|>(|O|+|S|) THEN ∃(i,i')∈I:∃(o)∈O,∃(s)∈S, i→(o,s) and i'→(o,s)
 - Also note that $h(O) \le h(I+S)$ (Shannon's h)
 - <u>Normal space diverges with time (2nd law of</u> <u>thermodynamics)</u>
 - Digital space converges with time
- You can't normally identify Iⁿ from traces T
 - T: $|T| < |I^n|$, $\exists (i,i') \in I^n : \exists (t) \in T$, $i \rightarrow (t)$ and $i' \rightarrow (t)$

 In digital space, history is not uniquely determined by the present

- FSMs are syntactic in nature
 - Semantics is driven entirely by context
 - The same sequence of bits can "mean" a lot of different things
 - Different sequences of bits can "mean" the same thing
- This means that "interpretation" is required for any meaningful use of digital evidence
 - There are a very large number of possible interpretations
 - But few of them are consistent, which is key

California Sciences Institute DFE scientific methodology

The fundamental theorem of DFE examination:

<u>What is inconsistent is not true</u>

- DFE examination consists of testing hypotheses to try to refute them.
 - No matter how many tests are performed, except for special cases, <u>you can't prove that any</u> <u>real world event is true</u>.
 - The <u>best</u> you can do, is show that your <u>tests</u>
 <u>failed to refute</u> the <u>hypotheses</u> at issue.
 - The <u>most</u> you can say (in proof) is that the <u>results</u> of the tests you did were <u>consistent</u> <u>with</u> some set of <u>hypotheses</u>.

California Sciences Institute Refutation is king

- On the other hand...
 - One refutation disproves a hypothesis.
 - The <u>least</u> you can say based on refutation is that the <u>hypothesis is not true</u>.
- Thus the methodology consists of:
 - Devise testable hypotheses (A *consistent* with B)
 - Test those hypotheses against the evidence
 - A scientific test should seek to refute a hypothesis and not to confirm it (seek *inconsistency*)
 - Inductive and deductive logic are valuable tools for testing hypotheses
 - As is experimental technique

- DFE is (normally) latent in nature
 - It can't be directly observed with human senses
 - The bits must be observed through tools
- How do we understand and trust the tools?
 - Most tools are computer programs (sequences of bits interpreted by FSMs)
 - How do we assess and present tool reliability?
- Most examiners today don't discuss this
 - But the Supreme court seems to think this is not up to snuff for other sorts of evidence

California Sciences Institute Challenge!!!

- DFE is latent \rightarrow depends on tools
 - FRE702: "product of reliable principles & methods"
 - What are the principals and methods of the tools?
 - How reliable are the tools?
 - What are the limits of the tools?
- A scientific methodology to evaluate tools?
 - No methodology → regardless of what the tools tell us, we don't know how to interpret it
- What is the basis for trusting your tools?
 - In most cases, no basis is provided
 - Do you know the principals and methods?

California Sciences Institute Does your expert do this?

- How reliable?
 - What sort of errors are made by the tools?
 - To do this, we need an error model
 - See "Challenges to Digital Forensic Evidence"
- How do we calibrate and test tools?
 - Calibration \rightarrow validation with known samples
 - What known samples are right for the matter?
 - What is the "right" answer and how do we tell?
 - Testing involves software verification
 - Mathematical proofs
 - Tests against error models

California Sciences Institute Even if the tool was "perfect"

- FRE 702: "the witness has applied the principles and methods reliably to the facts of the case"
 - Tools must be properly used w/in their limits
 - Results must be meaningfully interpreted
 - This implies relevant examiner knowledge, skills, experience, training, education
- A theory of measurement is needed:
 - What does the tool measure? How does it do it?
 - Do I need / can I use the same tool to test it?

- Can I use a tool that doesn't reveal mechanisms producing its outputs? Fred Cohen & Associates

- Normal space is limited by the speed of light
 - Speed of light (c) ~186,000 mi/s (3*10⁸m/s)
 - Matter can't be accelerated past c
 - Light and signals travel no faster than c

Digital space is also limited by c!!!

- Digital systems exist in the physical world
- So these physical constraints apply to them
- Digital space and computational complexity
 - Computational complexity limits what operations can be performed with what computing capacity in what time frame: another "c" for digital space

- There are many more examples of differences between the physics of digital information and the physics of the natural world.
- For details see:
 - F. Cohen, "Digital Forensic Evidence Examination - 3rd ed.", ASP Press, 2011

California Sciences Institute

Outline

- Introduction the basics and the need
- Science as a social activity
- A different physics an attempt at a theory

Fred Cohen & Associates

California Sciences Institute Where from here?

- The social part of science...
 - Here I am trying to convince you
 - If I do, you will try to convince others
 - In the marketplace of ideas, mindshare wins
 - For a while... until failures force abandonment
 - Refutation is king
 - The "meme"s that survive are more "fit"
 - In the environmental niches they live in
 - Evolution is not optimization
 - But refutation pushes us out of our gravity wells
- I would love to discuss your research...

California Sciences Institute Thank You

http://calsci.org/ - calsci at calsci.org http://all.net/ - fc at all.net