Challenges to Digital Forensic Evidence

Fred Cohen
CEO - Fred Cohen & Associates
Research Professor - The University of New Haven
Chairman – SecurityPosture
and my day job...

fred.cohen at all.net
http://all.net/
Outline

- Background
 - Fred Cohen – Digital Forensics
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
Fred Cohen & Associates

Fred Cohen

- Almost 30 years of information protection leadership
- Many complex research projects and subjects
- Consulting for many leading organizations
 - Government and Academic research and advise
 - Corporate consulting at the highest levels
 - Digital forensics, private and LE investigations
 - Strategic intelligence and critical infrastructures
- Research and Development
 - Evaluating technologies and lines of effort
 - Patented technologies and innovations
Forensics background

- Ph.D in electrical engineering - computer-centric
- ForensiX – Linux-based forensics tool
- Teach graduate forensics courses at UNH
- California SEARCH instructor
- California POST certified
- Research in forensics at Sandia National Labs
- Work on corporate civil cases here and there
- Testimony in Federal and State cases
- I tend to get the unusual cases
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
Processes and challenges

Process
- Identification
- Collection
- Transport
- Storage
- Analysis
- Interpretation
- Reconstruction
- Presentation
- Destruction

Faults
- Make/Miss
- Content
- Context
- Meaning
- Process
- Relationships
- Ordering
- Time
- Location
- Corroboration
- Consistency

Failures
- False +
- False -

Faults and Failures

<table>
<thead>
<tr>
<th>Process</th>
<th>Faults</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Make/Miss</td>
<td></td>
</tr>
<tr>
<td>Collection</td>
<td>Content</td>
<td>False +</td>
</tr>
<tr>
<td>Transport</td>
<td>Context</td>
<td>False -</td>
</tr>
<tr>
<td>Storage</td>
<td>Meaning</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td>Interpretation</td>
<td>Relationships</td>
<td></td>
</tr>
<tr>
<td>Reconstruction</td>
<td>Ordering</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Destruction</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corroboration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accident/Intent</td>
<td></td>
</tr>
</tbody>
</table>
Properties of digital evidence

• Latent in nature
 - Can only be seen, understood, analyzed, and presented with and through tools.

• Often fragile and time sensitive
 - Sometimes exists for very short time periods
 - Easily destroyed or modified
 - Easily mishandled

• Meaning is only clear in context
 - Patterns of information combine to provide substance

• Like a puzzle you put together to get a picture
 - Easily misinterpreted
 - Often misleading
 - Often patently false
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
Data at rest

- File and non-file representations of content on physical media
 - Networked computers and storage arrays
 - Disks, memory, tapes, CDs, cameras
 - PC boards, PCMCIA cards, network boards
 - PDAs, cell phones, USB rings, pen recorders
 - Printers, answering machines, watches, etc.

open, close, read, write, seek
Data in motion

- Mostly network services and communications
 - **Server**
 - Program opens a network port and waits for input
 - As input arrives, the program does its thing
 - Web server waits for ‘get’ and types out files
 - Mail server waits for email and delivers it
 - Telnet server waits for connection for login program
 - Ftp waits for file transfer requests and transfers files
 - IRC waits for chat sessions and relays content
 - **Client**
 - Program opens up port for output, makes request, awaits responses, shows to user, interacts

- Don't forget VoIP, tunnels, encryption, POTS, radios, cell systems, satellites, optical, etc.
Data in use

● Who is doing what and how?
 – Tagging users to content by behaviors / presence
 – Authentication
 • Something they have
 • Something they know
 • Something they are
 – What they do and what the computer does for them

● How do I get it?
 – Often present in audit trails across diverse systems
 – Often evidenced within content in storage
 – Sometimes has to be collected in real-time
What is often missed/made?

• Missed
 – Failure to identify evidence as present
 – Failure to collect it while it is fresh
 – Failure to identify relevant materials for warrant
 – Failure to properly label and record

• Made
 – Identity things as evidence that are not
 – Collect things that are not allowed in the warrant
 – Mislable things
 – Create forgeries (throw down computer)
Ceasing sources

- Take possession
 - Prevent destruction
 - Keep people safe
- Film the process?
- Photographs and labels
- Interview subjects
 - Get passwords, access codes, functional descriptions, etc.
“Good Practice”

Discover computer to be seized
Secure scene and move people away from computers and power

Expert advice?

Computer on

Yes
Follow advice!

No

• Do not touch keyboard
• Do not take advice from owner or user
• Photograph screen or note what is on it
• Allow printer to finish
• Power off equipment and pull out plugs

Label and photograph or video all components in situ

DO NOT TURN IT BACK ON

Do not touch keyboard
Do not take advice from owner or user
Photograph screen or note what is on it
Allow printer to finish
Power off equipment and pull out plugs
“Good Practice” (cont)

- Remove and label all connection cables
- Remove all equipment, label, and record details
 - do this carefully - label and note serial numbers, etc.
- Ensure that all equipment is properly labeled
- Search the area for diaries, notebooks, papers
 - especially look for passwords or other similar notes
- Ask the user for passwords and record these
- Submit equipment for forensic examination
“Good Practice” (cont)

• What to seize
 – Main system box
 – Monitor, keyboard, mouse, leads and cables, power supplies, connectors, modems
 – Floppy disks, DATs, tapes, Jazz and Zip disks and drives, CDs, hard disks
 – Manuals and software, papers, circuit boards, keys
 – Printers, printouts, and printer paper
 – If in doubt, seize it!
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
“Good Practice”

- Transport
 - Handle everything with care
 - Keep away from magnetic sources like loudspeakers, heated seats, radios, etc.
 - Place boards and disks in anti-static bags
 - Transport monitors face down buckled into seats
 - Place organizers and palmtops in envelopes
 - Place keyboards, leads, mouse and modems in aerated bags
Transporting evidence

- Many digital evidence forms are delicate
 - temperature sensitive - both hot and cold
 - shaking can damage them
 - bending connectors makes them fail
 - static electricity can affect them
 - dust, chemicals, water, and other factors harm them
 - time can cause them to decay
 - spores and fungi can damage them
 - magnets and light can damage them

- Accidental harm tends toward randomization
 - Can turn good evidence to bad evidence
 - Extremely unlikely to turn nothing into something
How long does it last?

Tape, CDs, disks
- 1-3 years if kept well
- can fail in minutes
 - excessive heat
 - a car on a sunny day
 - a radiator or heater
 - a match
- or in seconds
 - electromagnetic
 - a strong magnet
 - high impulse vibrations
 - overwritten

Paper (non-acid)
- hundreds of years
- can fail in minutes
 - excessive heat
 - fire
 - heaters / radiators
 - shredding
 - a shredder
 - eating it

Audit trails
- some are never stored
- others last minutes, hours, days, weeks, months, years
Retention requirements

- Companies don’t have to keep it forever…
 - 7 years for some corporate / legal data
 - 4 Years for most civil data
 - Accounting records 7-10 years or longer
 - Email as a business record
 - Log files as business records
 - Legal process can force retention

- Check with your legal staff
Loss of data

- Bits go away with time unless they are maintained
 - Electromagnetism withers with time
 - Optical disks are susceptible to fungi
 - Magnetic tapes become brittle
 - Disks become warped, crack, etc.
 - Microfiche degrades and becomes a combustible

- Only active maintenance on live systems can really keep it right for long time periods
 - But live systems are more susceptible to other events
Storage of media and data

- Cool, dry, free of fungi
- No temperature cycling
- No humidity cycling
- No EMP effects
- Periodic review and rereading
- Crypto-checksums
- CRC codes and other data recovery methods
- Redundancy
Fred Cohen & Associates

Storage & transport challenges

- **Miss**
 - Content lost / stolen / decayed
 - Process failures and data losses / corruption
 - Chain of custody issues

- **Make**
 - Content altered / took too long to get there

- **Most issues go against the prosecution**
 - Incompetency shown and pointed out
 - Lost evidence “might” have been exculpatory
 - “You altered it during the missing 13 minutes”
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
The biggest source of problems

- When it gets to the lab the problems start
 - This is the really complicated part of the work
 - Nobody has all the expertise needed
 - Any little mistake can be highly problematic

- The goal of the analyst is to
 - Do no harm
 - Get at the facts
 - Make them sensible in context
 - Identify the presence/absence or event sequence
Principles (Best Practices)

● Principle 1:
 - No action taken by police or their agents should change data held on a computer or other media

● Principle 2:
 - In exceptional circumstances where examination of original evidence is required, the examiner must be competent to do it and explain relevance and implications

● Principle 3:
 - Audit records or other records of all processes should be created and preserved.
 - An independent third party should be able to reproduce the actions with similar results

● Principle 4:
 - The officer in charge is responsible for adhering to these principles
More best practice?

- There are decisions to be made at every step
- Make sensible judgments
- Base your judgment on science
 - refutable theory
 - experiments
 - confirm theory
 - can refute theory
- Philosophy of science
 - Popper
Outline

● Background
● Basic notions – processes and challenges
● Evidence identification and collection
● Transportation and storage
● Analysis, interpretation, and reconstruction
 – Imaging
● Presentation
● Summary and conclusions
Imaging the contents

- Image without alteration
- Evidence of integrity
 - Crypto-checksums
 - Process of collection
 - Process of analysis
 - Ability to reproduce
- Chain of custody issues
- Imaging techniques vary with the media imaged
- Mount copies for analysis
 - read-only
 - verify checksum before and after analysis
 - take good notes on the process along the way
 - provide for replay of the whole analysis if needed
 - maintain the chain of custody

Better to analyze on a different system than it was produced on?
What is Best Practice?

- Nobody knows for sure
- Just because you are not perfect, doesn’t mean it's not good enough
 - It’s better to be better
- It’s fundamental to have a philosophical rational
 - It’s better to have thought it through
- Image without alteration
 - Heisenberg’s Uncertainty
 - No experiment without alteration
- Purity established early
 - write protect
 - crypto-checksum
 - keep original pure
 - validate purity over time
- Record process
 - the ability to repeat it
Imaging challenges

• Make / miss content
 – Was the ORIGINAL unaltered before imaging?
 • Chain of custody issues? Time available issues?
 • Could alterations be detected if present?
 – Was the copy exact and if not how not?
 • Was a cryptographic checksum used? Which one?
 • What tool was used? How good is it for this purpose?
 • Was the image onto a properly prepared disk?
 • Were there errors on the original? Copy?
 • Was hardware-level copy done? Does disk allow it?
 – Was the copy altered at any point and how?
 • Can we verify the cryptographic checksum again?
 • Was it verified at the end or periodically?
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
 - Analysis and interpretation
- Presentation
- Summary and conclusions
Analyze the data

- Putting together the puzzle
 - Generating and following leads
 - Identifying suspects
 - The process of elimination
 - Data formats
 - Derived evidence
 - Inculpatory and Exculpatory
 - Reconstructing the crime
 - Collating to collected data
 - Collecting more data
 - The smoking gun
 - Digital data is only a part of the overall picture
Generating & following leads

• Data gathered provides leads and indicates places to look
 – Example: files on a computer lead to web sites and postings which lead to user IDs which leads to other systems which provide more evidence

• How can I tell it’s a lead?
 – The process of elimination takes out a lot of information
 – You are investigating something in particular?
 – Experience and the usual suspects
• Whatever data you start with generates leads
 - IP addresses
 - Names in data files
 - System names
 - File types and content
 - Techniques used
 - Programs present
 - Associations and job
 - Unusual knowledge
 - And so forth...

Means, motive, and opportunity should be present
Errors generated

• Each process can generate errors
 – Identify and challenge errors not eliminated
 • IP addresses – can be forged
 • Names in data files – how can they get there?
 • System names – how are they arrived at?
 • File types and content – defeat in detail
 • Techniques used – did they follow process?
 • Programs present – who put them? legitimate uses?
 • Associations and job – other candidates?
 • Unusual knowledge – who else has the knowledge?
 • And so forth...
The process of elimination

- Start with lots and lots of data
- Throw away known irrelevant data
 - e.g., standard OS stuff
 - data outside times of interest
 - data from and to elsewhere
- Focus examination on what’s left
 - Unusual names, location, content
 - Encrypted or encoded data
 - Data with dates and times of interest
 - Erased data, logs, missing data, etc.
 - Pictures, scripts, programs, etc.

Evidence is evidence exculpatory counts too mostly dead ends

Copyright © 2006 - Fred Cohen & Associates - ALL RIGHTS RESERVED
Elimination challenges

- Miss – usually through misinterpretation
 - Content seems more important than it is and is kept and considered instead of eliminated
 - Meaning exaggerated in context to create false line
 - Process analysis misses missing parts, leaps too far
 - Relationships not eliminated when false links followed
 - Ordering identified when none is actually present
 - Time setting and changing errors or offsets ignored
 - Location assumptions made and not fully checked
 - Consistency errors not identified to investigate more
 - Misinterpretation of meaning leads to false evidence
Elimination challenges 2

• Make – usually through over-interpretation
 – Content threw away something should have kept
 – Meaning missed resulting in key item eliminated
 – Process analysis misses leap to find new evidence
 – Relationships eliminated when they shouldn't be
 – Ordering missed when it is present
 – Time not properly correlated when it can be
 – Location not identified when it can be
 – Consistency errors falsely identified
 – Misinterpretation of meaning fails to find real evidence
Data formats

- Lots and lots of them
 - standard and non-standard
 - languages and character sets
 - compressed and packed
 - embedded and encoded
 - encrypted and transformed
 - context-dependent
 - combinations and recursive
- Some are often missed or misinterpreted leading to missed content
Derived evidence

- Evidence is often derived from other evidence:
 - Two records at the same time in different places
 - 1 record is in central time, the other in pacific time
 - System time and time zone and clock skew must be combined with times indicated to determine that the events are at the same time
 - Search of a system yields data on other systems
 - A web cache file indicates pornographic content
 - The remote website contains records of the activities
 - One of the activities involves drugs
 - The system with the drug information links to bank transfers
 - And so on
More derived evidence

- Crimes are sequential events in digital systems
 - Picking out the different sequences can be very hard
 - IP traffic can be collected at 100,000,000+ bits per second and can involve data from hundreds of sources and destinations
 - The data we look for involves sequences between select pairs of participants
 - Correlation with system data is complex
 - Correlate traffic with activity logs at end points
 - Correlate traffic with activity logs in intervening infrastructure
 - Correlate traffic with dial-in times, phone bills, etc.
Still more derived evidence

- Data is stored or transmitted encrypted
 - Decryption yields user IDs and passwords

- Audit trails indicate an attack is underway
 - Based on what the attack might do, we try to ascertain motive and skill levels
 - Using likely intent, we seek to search the source system
 - The search turns up tools capable of achieving the assumed intent
 - Information on the suspect system indicates success against other targets
Inculpatory and Exculpatory

- Evidence is evidence
 - If it says guilty, you say guilty
 - If it says innocent, you say innocent

- Forensics deals in facts and interpretation
 - Interpretation is opinion based on experience and data
 - Facts are collected and documented

- Most interpretation can be pretty objective
- Some interpreters can be pretty subjective
- The truth can be verified by experiments
 - The scientific method
Collecting more data

- As you start to see the mosaic, pieces are missing
 - How much data do you need?
 - How do you collect more?
 - What’s the cost?
- But...
 - The next piece could prove my client innocent
 - Indeed it could...
 - Or it could continue to make the picture clearer
 - Or it could be irrelevant
 - People make judgements and people aren’t perfect
What does it tell us

- Details of things that happened inside of computers
 - At this time
 - This thing was done
 - By this program
 - Acting for this user
 - With this result

- The timeline and pattern of these is interpreted to demonstrate criminal activity, cause, & intent
How to be more certain...

- More related facts limits alternative explanations
- Other forms of evidence help convince juries
- In some cases we can do mathematical analysis
 - to show that specific other explanations are unlikely
 - to show how complex it would be to generate in other ways
But I wasn’t at the keyboard!

- I was on a break...
 - I was in the other room...
 - I leant the system to my brother in law...
 - Someone broke in and did it...
 - It was a mistake...

- There are a million explanations - but only one truth
 - Find the most consistent set of facts
 - Present them in an accurate light
 - Refute any erroneous facts given by any party
 - Let the jury decide
Digital data is only a part of the overall picture

- Physical evidence
- Means, motive, opportunity
- Follow the money
- Statements of witnesses
- Corroborating evidence
- Exculpatory evidence
- Statements of the accused
- Paper trails and pictures
- Eye witnesses

If it looks like a duck and quacks like a duck...
Validation - case study

• Civil trial - expert witness for one side turned into a special master for the court

• The ‘special master’ was clearly biased and had made many unsupportable statements

• In the end, two things won out:
 – refutation of several ‘expert’ opinions by physical evidence (analysis of a video tape, limits of time to do things the claimant was accused of by the SM)
 – evidence of the defendant violating the court’s order by perpetrating acts during the search and seizure
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
 - Reconstruction
- Presentation
- Summary and conclusions
Reconstructing the crime

- Crime scene reconstruction and fidelity
 - Build a copy of the crime scene
 - To the level of fidelity feasible based on resources and value
 - Try to reproduce the crime as postulated
 - Do the same things you claim the perpetrator did
 - Look for confirmations and refutations
 - Look for changes in system state and event sequences
 - Every time it runs it will run differently
 - Find the differences and commonalities
 - Compare to the evidence available
 - Look at the mosaic as a whole picture
Reconstruction challenges

- We are trying to create a before and after picture
 - How did we get the before?
 - How well did we do it?
 - How can we tell how well we did it?
 - How do we compare before to after?
 - How accurate is the reconstruction?
 - What is relevant and irrelevant?
 - Ocam’s Razor?
 - The simplest it can be - but no simpler
 - What is a model?
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
Process requirements

- Properly obtained evidence
 - Permission of the owner
 - Permission of the suspect
 - Search warrant / hot pursuit

- Chain of custody
 - Properly found, collected, annotated, taken apart, transported, searched, analyzed, stored, tracked, and copies provided to the other side

- Exculpatory & inculpatory evidence presented
Chain of custody issues?

• Just like any other evidence
 – must get to it in time
 – must collect it properly
 – must transport it properly
 – must hold it securely
 – must analyze it carefully
 – must leave evidence in tact
 – must provide repeatability
 – must be available for defense
 – must be presentable in court
 – must be explainable in court

Just because it’s in a computer doesn’t make it right
Mosaics are rarely perfect in digital evidence
 - There are missing pieces
 - There are slightly off pieces
 - There are extra pieces

There are reasons for this that can be demonstrated

In the end, the real issue is
 - Does it look like the suspect?
 - How revealing it is?
 - Is it consistent with the other evidence?

Is it more probative than prejudicial?
 - More often than not – they let the jury decide
Presentation strategies

- Present the mosaic of the case in all its glory
 - Show the process that you assert took place
 - Step through the evidence supporting your process
- Address strengths and weaknesses along the way
 - Most favored position first and last
 - Alternatives in the middle
- Summarize the evidence in context of the process
 - Address anomalies before your opponent does
- Draw conclusions - if any
 - Provide the basis for drawing those conclusions
 - Address other possible interpretations and their basis
Outline

- Background
- Basic notions – processes and challenges
- Evidence identification and collection
- Transportation and storage
- Analysis, interpretation, and reconstruction
- Presentation
- Summary and conclusions
Meeting the challenge

- There are two sides to every story
- The other side is obliged to do their best
- The goal is to have the best evidence you can get
- No case or evidence is perfect
- No person is perfect
- Expect to be challenged
- Don’t become defensive
- Don’t take sides

<table>
<thead>
<tr>
<th>Process</th>
<th>Faults</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Make/Miss</td>
<td>False +</td>
</tr>
<tr>
<td>Collection</td>
<td>Content</td>
<td>False -</td>
</tr>
<tr>
<td>Transport</td>
<td>Context</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>Meaning</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Process</td>
<td></td>
</tr>
<tr>
<td>Interpretation</td>
<td>Relationships</td>
<td></td>
</tr>
<tr>
<td>Reconstruction</td>
<td>Ordering</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Destruction</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corroboration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accident/Intent</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy?

- Computer records are NOT ALWAYS accurate
 - Times and dates are often off
 - compare them to a standard
 - http://all.net/
 - press “what time is it?”
 - note your computer’s time
 - note the Navy’s time
 - File time/date stamps altered
 - echo “test” > aa; cat aa
 - ls -l aa; sleep 60; touch aa
 - ls -l aa; cat aa; rm aa

- Inaccuracies can be intentional
 - cd /u/local/attacks
 - ls genocide/log-wipers
 - ‘cloak’ and ‘cloak2’
 - wipe you from /var/adm/*
 - wipe you from utmp
 - fully automatic
 - need to be root
 - ps hide
 - change your process names to hard-to-detect ones
 - ls sabotage/rootkit; cd
 - create backdoors
Timeliness?

- **Real-time capture**
 - network traffic, telephone calls, IRC sessions
- **Rapid capture (hours-days)**
 - ISP dial-ins, system logs, backups, cache files
 - telnet defender
 - less, netscape/cache/index.db
 - find the evil files
 - 15 minutes
- **Timely analysis**
 - PDAs
 - run out of power
 - lose memory
 - disks/tapes/CDs
 - 1-2 years expected lifetime
 - some last much longer
 - heat/magnets can destroy
 - data leading to other data
Completeness?

- Most computer records are fairly minimal
 - date, time, major event
 - sometimes only start, not stop
 - sometimes only stop, not start
 - content often missing
 - user information limited

- Better logs are easy to get
 - keystroke logging
 - tapping specific IPs / ports
 - log files take space

- Computer records can be missing things
 - entire records can be missed
 - attackers try to destroy logs
 - attackers try to avoid logs
 - attackers try to forge logs
 - almost always some evidence of alteration
 - use redundancy
Admissibility?

• Most computer records come in under the business records exemption from heresy

• They come in through expert testimony
 – Systems administrator declares that they were taken in the normal course of business
 – Indicates specific actions taken to collect records
 – Shows them in light of other records taken and kept
 – Expert witness explains and interprets the records
 – Opposing experts make their claims
How valid is it?

- Computer data is easily altered
 - by attackers it is done in the normal course of events
 - by defenders to make it look like an attack?
 - by accident all of the time
 - but rarely by hardware faults
 - sometimes by software faults
- It’s usually fairly easy to tell if it was altered
 - it’s gone completely over a portion of time
 - inconsistencies show up across audit trails
- It’s hard to alter undetectably
Overcoming challenges

• You’d better have some more evidence!
 – Digital evidence - so far - has NEVER been the whole case in any successful litigation
 – The money paid for the secrets when sold?
 – The time stamps indicate that nobody else could have used tty31 at that time?
 – What web sites did you visit? What did you do there?
 • Check against those web site audit records
 – I don’t really remember any of the details, I just like to cruise the web
 • Proxy? Review the logs…

• A pretty good defense!
How valid is it?

- Unaltered audit information is not always correct
 - Forged email, sessions, etc. look just as real
 - If I break in to user ‘Joe’ it looks like ‘Joe’ did it
 - Audit records fail during high load conditions
 - Audit records fail under unanticipated conditions
 - Some programs don’t produce records consistently

- Audits can often be avoided
 - Program audits are easily bypassed by not using the program to alter the data
What can go wrong?

- Pull the plug or not?
 - astute points on both sides
- Marking it properly
 - bag and tag techniques
- Transport sensitivity
 - shaking
 - temperature
 - dust, fumes, magnets, etc.
- Storage sensitivity
 - time in storage
 - also like transportation
- Analysis errors
 - not working the copy
 - modifying/deleting evidence
 - missing evidence
 - misreading evidence
 - not getting redundant data
 - looking excessively
- Presentation errors
 - talking technical
 - not using pictures
 - denying weaknesses of digital evidence
Legal Challenges

- Jurisdiction
 - Global nature of IT
 - Most communications are interstate or international
 - Cooperative agreements
 - Evidence problems

- Case Law
 - There isn’t enough
 - We are always guessing

- Qualifications
 - No standard qualifications for expert witnesses

- Privacy
 - It’s hard to get some things w/in the rules

- Search Warrants & Permission
 - Validity of broad searches
 - What can you look for?
 - What do you ask for?
 - Expand as you learn more
 - Permission==agreement?

- Privileges
 - Doctors, Lawyers, Clergy
Questions?
Thank You

http://all.net/ fc@all.net