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Introduction
A "virus" may be loosely defined as a sequence of symbols which, upon interpretation in a 
given environment, causes other sequences of symbols in that environment to be modified so 
as to contain (possibly evolved) viruses. If we consider programs as sequences of symbols 
and computer systems as environments, viruses are programs that may attach themselves to 
other programs and cause them to become viruses as well. If we consider strands of proteins  
as sequences of symbols and the biochemistry of cell nuclei as environments, viruses are 
protein  strands  that  may  attach  themselves  to  other  protein  strands  and  cause  them to 
become viruses as well. If we consider thought patterns as sequences of symbols and brains 
as environments, viruses are thought patterns that may attach themselves to other thought 
patterns and cause them to become viruses as well. 

Consider  the  case  where  two  similar  information  areas  (call  them  cells),  are  able  to 
communicate sequences of symbols. If one cell (A) contains a virus (V), and if communication 
results in the transmission of V to the other cell (B), and if B then interprets V, sequences of  
symbols stored in B may be modified. If appropriate communication paths are available, a 
virus may spread from cell to cell. Consider the case where two similar groups of cells (call 
them  organisms),  are  able  to  communicate  sequences  of  symbols.  If  one  organism (A) 
contains  a  virus  (V),  and  if  communication  results  in  the  transmission  of  V  to  the  other 
organism (B), and if B then interprets V, sequences of symbols stored in cells of B may be  
modified.  If  appropriate  communication  paths  are  available,  a  virus  may  spread  from 
organism to organism. We can extend this sequence of analogous events indefinitely, and 
thus form a hierarchy of organisms and an associated hierarchy of viral communication paths. 

There are many properties of viruses that are interesting at many different levels within many 
different domains. We will extend our discussion in the domain of computer viruses; viruses 
within computer systems. In our discussion, we use as general a model of environments and 
symbol sequences as we reasonably can in the hopes that the extensions to other domains 
and levels will be straight forward and obvious. The reader who is so inclined, may consider  
our discussion of computer viruses as merely a vehicle for expressing our understanding in 
the more general sense. 
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Extended Abstract

In this thesis, we open the new topics of viruses and protection from viruses in computer 
systems. We define a class of computing mechanisms called "viruses",1 and explore many of 
their properties, particularly in regard to the threat they pose to the integrity of information in 
information systems. 

The  present  work  concentrates,  at  the  surface  level,  on  integrity  problems  in  computer 
systems, but strong analogies may be drawn to biological systems and other systems with the 
information characteristics necessary to support viruses. Where possible, analogies to other 
systems will be drawn at a philosophical level, but no attempt will be made to demonstrate 
these analogies with mathematical rigor. 

We begin our discussion by briefly reviewing the relevant literature in "computer security", and 
conclude that no serious previous work has been found in the open literature on the problem 
of computer viruses. It  thus appears that the concept of  computer viruses is a novelty in  
scientific literature at this point, and that little effective protection against viruses is currently 
available. 

We begin the discussion of viruses with an informal discussion based on an English language 
definition. We give "pseudo-program" examples of viruses as they might appear in modern 
computer systems, and use these examples to demonstrate some of the potential damage 
that could result from their use in attacking systems. It is because of this potential damage 
that we give our examples in pseudo-code rather than an actual computer language for an 
actual computer system. 

We formally define viruses for "Turing machines", and explore some of their properties. We 
define a Turing machine and a set of (machine,tape-set) pairs which comprise "viral sets"  
(VS). We show that the union of VSs is also a VS, and that therefor a "largest" VS (LVS)  
exists for any machine with a viral set. We define a "smallest" VS (SVS), as a VS of which no 
subset is a VS, and show that for any finite integer "i", there is an SVS with exactly i elements. 

We show that  any  self  replicating tape  sequence is  a  one  element  SVS,  that  there  are 
countably infinite VSs and non VSs, that machines exist  for which all  tape sequence are 
viruses and for which no tape sequences are viruses, and that any finite sequence of tape 
symbols is a virus with respect to some machine. 

We show that determining whether a given (machine,tape-set) pair is a VS is undecidable (by 
reduction from the halting problem),  that  it  is  undecidable whether  or not  a given "virus" 
evolves into another virus, that any number that can be "computed" by a TM can be "evolved" 
by a virus, and that therefor, viruses are at least as powerful as Turing machines as a means  
for computation. 

We then move into a discussion of the relevance of viruses to modern computer protection 
techniques.  We  modify  the  "subject  object"  protection  model  @cite[Harrison]  to  allow 
computation  to  be  modeled  along  with  protection,  by  defining  a  new  class  of  protection 
machines called "Universal  Protection Machines"  (UPMs).  We show several  examples  of 
UPM viruses, and prove that a virus can spread to the transitive closure of information paths 

1 There are two spellings for the plural of virus; 'virusses', and 'viruses'. We use the one found in Webster's 3rd 
International Unabridged Dictionary.
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from any given source. 

The  paths  of  sharing,  transitivity  of  information  flow,  and  generality  of  information 
interpretation are identified as the key properties in the spread of computer viruses, and a 
case by case analysis of these properties is shown. We show that the only systems with 
potential for limiting viral spreading are systems with limited transitivity and limited sharing,  
systems with no sharing, and systems without general interpretation of information (Turing 
capability). Only the first case appears to be of practical interest to current computer systems. 
Several protection techniques are explored for their effect on limiting viral spread in computer 
systems, and some previously unexposed properties of the combination of the "security" and 
"integrity" models are shown. Difficulties with "imprecise" protection schemes are presented, 
the most injurious being their tendency to move towards isolationism. 

These results are extended to the design of secure computer networks  which implement  
distributed isolationism, and which allow the connection of trusted and untrusted computers to 
form  trusted  computer  networks.  Simple  design  rules  are  derived  which  allow  the 
configuration of secure networks from pictures. Two classes of attacks against these types of 
computer networks are examined, and an example network is shown under various attack 
assumptions. 

We examine the generalization and combination of security and integrity lattices to partial 
orderings,  and  show  that  a  partial  ordering  is  as  general  a  classification  scheme  as  is 
necessary to model protection in a transitive information network. We extend the previous 
results  to  include  the  effects  of  modifications  of  a  protection  system  over  time,  show 
techniques for generalized evaluation of the effects of collusions, and demonstrate a method 
by which a provably correct information management system for automating administration of 
protection in information networks may be implemented. 

We explore viral detection and removal methods which don't depend on the prevention of 
sharing, limitations on transitivity of information flow, or restricted functionality. Undecidability 
issues  presented  earlier  are  presented  in  a  different  form  to  demonstrate  the  potential 
difficulties with detection and cure of computer viruses. Although certain classes of viruses,  
predominantly  those  with  trivial  or  simplistic  evolutionary  characteristics,  appear  to  be 
defensible  through  detection  and  removal,  more  complex  or  highly  evolutionary  viruses 
appear to present unscalable barriers. The biological analogy to rapidly mutating viruses such 
as those which comprise the common cold appears to be very strong here. 

We  examine  a  complexity  based  integrity  maintenance  method  with  the  possibility  of 
detecting corruption through built in self test. A method is shown whereby copyright notices 
and other aspects of programs and data may be maintained even in a system with no built in  
defenses. Integrity corruption in such a system is show to be extremely complex, and the 
technique appears to present a costly but viable defense. 

The  results  of  several  experiments  with  computer  viruses  are  used  to  demonstrate  that 
viruses are a formidable threat in both normal and high security operating systems. Detailed 
descriptions of experiments are given for three examples, an example of a very short virus for 
an actual operating system is given, and summary tables are presented. 

We explore the use of the results in computer viruses in biological and other domains, and 
consider the use of the fundamental viral definition as a definition of life. Living systems are  
considered  as  a  combination  of  an  environment  and  information  within  that  environment 
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which reproduces and evolves, and several philosophical questions are explored. 

It is concluded that the study of computer viruses is an important research area with potential  
applications to other fields, that current systems offer little or no protection from viral attack,  
and that the only perfectly 'safe' policy as of this time is isolationism. Extensions of this work  
are suggested, and several conjectures are presented. 

Related Work

Given the wide spread use of sharing in current  computer systems, the threat  of  a virus 
carrying a Trojan horse @cite[Anderson] @cite[Linde] is significant. Although a considerable 
amount  of  work  has  been  done  in  implementing  policies  to  protect  from  undesirable 
dissemination  of  information  @cite[Bell]  @cite[Denning],  and  many  systems  have  been 
implemented  to  provide  protection  from this  sort  of  effect  @cite[McCauley]  @cite[Popek] 
@cite[Gold] @cite[Landwehr], little work has been done in the area of keeping information 
entering an area from causing integrity corruption @cite[Lampson] @cite[Biba]. 

There are many types of information paths possible in computer systems, some legitimate 
and authorized, and others that may be covert @cite[Lampson], the most commonly ignored 
one being through the user. We will ignore covert information paths throughout this work, and 
concentrate  only  on  the  effects  of  viruses  as  transmitted  through  the  normal  authorized 
information paths available in computer systems. 

The general facilities exist for providing provably correct protection schemes @cite[Feiertag],  
but they depend on a consistent and complete security policy that is effective against the 
types of attacks being carried out.  Even some quite simple protection systems cannot be 
proven 'safe' @cite[Harrison]. Protection from denial of services requires the solution to the 
halting  problem  which  is  well  known  to  be  undecidable  @cite[Turing].  The  problem  of 
precisely  marking  information  flow  within  a  system  has  been  shown  NP-complete 
@cite[Fenton]. The use of guards for passing untrustworthy information between users has 
been examined @cite[Woodward], but in general depends on the ability to prove program 
correctness which is well known to be NP-complete @cite[Garey]. 

The Xerox worm program @cite[Shoch] has demonstrated the ability to propagate through a 
network, and has even accidentally caused denial of services. In a later variation, the game of 
'core wars' @cite[Dewdney] was invented to allow two programs to do battle with one another. 
Other variations on this theme have been reported by many unpublished authors, mostly in 
the context of night time games played between programmers. The term virus has also been 
used in conjunction with an augmentation to APL in which the author places a generic call at  
the beginning of each function which in turn invokes a preprocessor to augment the default  
APL interpreter @cite[Gunn]. 

The potential threat of a widespread security problem has been examined @cite[Hoffman] 
and the potential  damage to government, financial,  business, and academic institutions is 
extreme. In addition, these institutions tend to use ad hoc protection mechanisms in response 
to specific threats rather than theoretically sound techniques @cite[Kaplan]. Current military 
protection systems depend to a large degree on isolationism, however new systems are being 
developed to allow 'multilevel' usage @cite[Klein]. None of the published proposed systems 
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defines or implements a policy which could completely prevent viral attack. 

More detailed literature reviews on particular areas of interest are presented throughout the 
text as required. 
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Computational Aspects of Computer Viruses
We begin our presentation of the computational aspects of viruses with an informal discussion 
of viruses within modern computer systems. We then move into more formal definitions using 
Turing machines @cite[Turing], and formally show mathematical properties of viruses.

Informal Discussion

We informally  define a computer 'virus'  as a program that  can 'infect'  other programs by 
modifying them to include a, possibly evolved, copy of itself.  With the infection property, a 
virus can spread throughout a computer system or network using the authorizations of every 
user using it to infect their programs. Every program that gets infected may also act as a virus 
and thus the infection spreads.

The following pseudo-program shows how a virus might be written in a pseudo-computer 
language. The ":=" symbol is used for definition, the ":" symbol labels a statement, the ";" 
separates statements, the "=" symbol is used for assignment or comparison, the "~" symbol 
stands for not, the "{" and "}" symbols group sequences of statements together, and the "..."  
symbol is used to indicate that an irrelevant portion of code has been left implicit.

program virus:=
{1234567;

subroutine infect-executable:=
{loop:file = get-random-executable-file;
if first-line-of-file = 1234567 then goto loop;
prepend virus to file;
}

subroutine do-damage:=
{whatever damage is to be done}

subroutine trigger-pulled:=
{return true if some condition holds}

main-program:=
{infect-executable;
if trigger-pulled then do-damage;
goto next;}

next:}
A Simple Virus "V"

This  example  virus  (V)  searches  for  an  uninfected  executable  file  (E)  by  looking  for 
executable files without the "1234567" in the beginning, and prepends V to E, turning it into  
an  infected  file  (I).  V  then  checks  to  see  if  some triggering  condition  is  true,  and  does 
damage. Finally, V executes the rest of the program it was prepended to. When the user  
attempts to execute E, I is executed in its place; it infects another file and then executes as if  
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it  were  E.  With  the  exception  of  a  slight  delay  for  infection,  I  appears  to  be E until  the 
triggering condition causes damage.

A common misconception of a virus relates it  to programs that  simply propagate through 
networks. The worm program, 'core wars',  and other similar programs have done this, but 
none of them actually involve infection. The key property of a virus here, is its ability to infect  
other  programs,  thus  reaching  the  transitive  closure  of  sharing  between  users.  As  an 
example, if V infected one of user A's executables (E), and user B then ran E, V could spread 
to user B's files as well.

It should be pointed out that a virus need not be used for destructive purposes or be a Trojan 
horse. As an example, a compression virus could be written to find uninfected executables, 
compress them upon the user's permission, and prepend itself to them. Upon execution, the 
infected program decompresses itself and executes normally. Since it always asks permission 
before performing services, it is not a Trojan horse, but since it has the infection property, it is 
still a virus. Studies indicate that such a virus could save over 50% of the space taken up by 
executable files in an average system. The performance of  infected programs decreases 
slightly as they are decompressed, and thus the compression virus implements a particular 
time space tradeoff. A sample compression virus could be written as follows:

program compression-virus:=
{01234567;

subroutine infect-executable:=
{loop:file = get-random-executable-file;
if first-line-of-file = 01234567 then goto loop;
compress file;
prepend compression-virus to file;
}

main-program:=
{if ask-permission then infect-executable;
decompress the-rest-of-this-file into tmpfile;
run tmpfile;}

}
A Compression Virus "C"

This program (C) finds an uninfected executable (E), compresses it, and prepends C to form 
an infected executable (I). It then decompresses the rest of itself into a temporary file and 
executes normally. When I is run, it will seek out and compress another executable before 
decompressing E into a temporary file and executing it. The effect is to spread through the 
system compressing executable files, and decompress them as they are to be executed.  An 
implementation of this virus has been tested under the UNIX operating system, and is quite 
slow, predominantly because of the time required for decompression.

As a more threatening example, let us suppose that we modify the program V by specifying 
"trigger-pulled" as true after a given date and time, and specifying "do-damage" as an infinite 
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loop. With the level of sharing in most modern computer systems, the entire system would 
likely become unusable as of the specified date and time. A great deal of work might be 
required to undo the damage of such a virus. This modification is shown here:

...
subroutine do-damage:=

{loop: goto loop;}

subroutine trigger-pulled:=
{if year>1984 then true otherwise false;}

...
A Denial of Services Virus

As an analogy to this virus, consider a biological disease that is 100% infectious, spreads 
whenever animals communicate, kills all infected animals instantly at a given moment, and 
has no detectable side effects until that moment. If  a delay of even one week were used 
between the introduction of the disease and its effect, it would be very likely to leave only the 
people in a few remote villages alive, and would certainly wipe out the vast majority of modern 
society. If a computer virus of this type could spread throughout the computers of the world, it  
would likely stop most computer usage for a significant period of time, and wreak havoc on 
modern government, financial, business, and academic institutions.

A better understanding of the events which might comprise an actual  viral  attack may be 
facilitated with the following time line, which shows a simplified scenario of a viral attack on a 
computer system.

     initial
    infection      takeover ...   triggering

| | | time
--------------------------------...-------------------->
  |  | | ||  | | || ||  | |  | | || |  |

spreading delay     damage

A scenario of a Viral Attack

A viral attack on a computer system begins with an initial infection. This infection may be 
created internally  or  communicated to  the system from outside,  perhaps as the result  of 
importing infected vendor software.

Once implanted, every time a virus is interpreted, other programs may become infected. Each 
replication of a virus is called an infection, and the period over which infection takes place is  
called the spread time. A typical virus spreads from program to program, and from user to 
user, eventually embedding its replicants in every program in the system.

Once a virus  spreads to  the transitive  closure of  information flow within  the system,  the 
infectious  period  is  ended.  In  most  current  operating systems,  the resulting infection can 
spread to all  programs, so we call  the end of the infectious period the takeover  time.  In 
systems with special users that have all rights, we consider the system taken over when a 
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special user's program becomes infected.

At  this point,  an attacker  wishing to  do severe damage might  choose to  simply wait.  By 
delaying the damage in a viral attack, an attacker can cause backup tapes to store infected 
copies of programs, and thus to become of little value once damage is done. A particularly  
nasty attacker might even infect the backup program and encrypt all information on backup 
tapes, decrypting information upon retrieval until such time as desired. The period over which 
an attacking virus waits before performing damage is called the delay time.

The condition used to cause the damaging effects of a virus to begin is called the triggering 
condition, and the time at which triggering takes place is called the triggering time. Once 
triggering occurs, every time an infected program is executed, damage is done.

In the case of the encrypting virus mentioned above, the damage might be for each program 
to enter an infinite loop. Even if we were to restore the backup tapes using a different system, 
we would find only encrypted information, and thus a great deal of work might be lost.

Symbols Used in Computability Proofs

Throughout the remainder of this thesis, we will be using logical symbols to define and prove 
theorems about "viruses" and "machines". We begin by detailing these symbols and their 
intended interpretation.

We denote sets by enclosing them in curly brackets "{" and "}" [e.g. {a,b}]. We normally use 
lower case letters [e.g. a,b,...] to denote elements of sets, and upper case letters [e.g. A,B,...]  
to denote sets themselves. The exception to this rule is the case where sets are elements of 
other sets, in which case we use the form most convenient for the situation.

The set theory symbols ∈, SUBSET(), UNION(), and, or, ∀, iff, and ∃ will be used in their 
normal manner, and the symbol NATURALS() will be used to denote the set of the natural  
numbers [e.g.{0,1,...}]. The notation {x s.t. P(x)} where P is a predicate will be used to indicate 
all x s.t. P(x) is true. Square brackets "[" and "]" will be used to group together statements 
where  their  grouping is  not  entirely  obvious,  and will  take  the  place of  normal  language 
parens.  The "("  and ")"  parens will  be used to  denote sequences [e.g.  (1,2,...)].  The "..." 
notation will be used to indicate an indefinite number of elements of a set, members of a  
sequence, or states of a machine wherein the indicated elements are too numerous to fill in or 
can be generated by some given procedure.

When speaking of sets, we may use the symbol "+" to indicate the union of two sets [e.g. {a}+
{b}={a,b}], the symbol UNION() to indicate the union of any number of sets, and the symbol "-" 
to indicate the set which contains all elements of the first set not in the second set [e.g. {a,b}-
{a}={b}]. We may also use the "=" sign to indicate set equality. In all other cases, we use these 
operators  in  their  normal  arithmetic  sense.  The |...|  operator  will  be used to  indicate  the 
cardinality of a set or the number of elements in a sequence as appropriate to the situation at  
hand [e.g. |{a,b,c}|=3, |(a,b,...,f)|=6], and the symbol | when standing alone will indicate the 
"mod" function [e.g. 12|10=2].
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Computing Machines

We begin our formal discussion with a definition of a computing machine @cite[Turing] which 
will serve as our basic computational model for the duration of the discussion. We will be 
discussing the class of machines which consist of a finite state machine (FSM) with a "tape 
head" and a semi-infinite tape [see figure below]. The tape head is pointing at one tape "cell"  
at any given instant of time, and is capable of reading or writing any of a finite number of  
symbols from or to the tape, and of moving the tape one cell to the left (-1) or right (+1) on any 
given "move". The FSM takes input from the tape, sets its next state, and produces output on 
the tape as functions of its internal state and maps.

tape
+-+

+-------+ | |cell 0
|Finite     | tape +-+
|State  |======>| |cell 1
|Machine| head +-+
+-------+               |.   |

|.   |
|.   |

A Computing Machine

A set of Computing Machines “TM” is defined as follows:

∀ x [x ∈ TM] iff

M: {SM, IM, OM: SM × IM →  IM, NM: SM × IM → SM, OM: SM × IM → d

where the state of the FSM is one of n+1 possible states,

SM 0 (S0, …, Sn}, n∈ℕ

the set of tape symbols is one of j+1 possible symbols, and

IM 0 (I0, …, Ij}, j∈ℕ

the set of tape motions is one of three possibilities:

d={-1, 0, 1}.

We now define three functions of "time" which describe the behavior of TM programs. Time in 
our discussion expresses the number of times the TM has performed its basic operation 
(called a "move" by Turing).

The "state(time)" function is a map from the move number to the state of the machine after 
that move,

§M : ℕ → SM : state (time)

the "tape-contents(time,cell#)" function is a map from the move number and  the  cell number 
on the semi-infinite tape, to the tape symbol on that cell after that move,

□M : ℕ×ℕ → IM : tape contents (time, cell)

and  the  "cell(time)"  function  is a map from the move number to the number of the cell in  
front of the tape head after that move.
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PM :  ℕ → ℕ : cell (time)

We  call the 3-tuple (§M, □M, PM), the "history" (HM) of the machine, and the HM for a particular 
move  number (or  instant  in time if you prefer) the "situation" at that time.  We describe the  
operation of the machine as a series of "moves"  that  go from  a  given situation to the next  
situation.  The initial situation of the machine is described by:

(§M(0)=§M0, □M(0,i) = □M(0,1),PM(0)=PM0), i∈ℕ

All  subsequent  situations  of  the machine can be determined from the initial situation and 
the functions "N", "O", and  "D"  which map  the  current  state of the machine and the symbol 
in front of the tape head before a move to  the  "next  state",  "output",  and  "tape position"  
after  that move.  We show the situation here as a function of time:

∀ t ∈ℕ [§M(t+1)=N(§M(t), □M(t,PM(t))] and

[□M(t+1,PM(t))=O(§M(t),□M(t,PM(t))] and

[∀ j ≠ PM(t), □M(t+1,j)=□M(t,j)] and

[PM(t+1)=⌈0,PM(t)+D(§M(t),□M(t,PM(t)))⌉]]

These  machines have no explicit "halt" state which guarantees that from the time such a 
state  is  entered,  the  situation  of  the machine  will  never change.  We thus define what we  
mean by "halt" as any situation which does not change with time.

We will say that "M Halts at time t" IFF

∀ t' > t, [§M(t)=§M(t') and [∀ i∈ℕ, □M(t,i) = □M(t',i)] and PM(t)=PM(t')]

and that "M Halts" IFF

∃t ∈ℕ : M Halts at time t

We say that "x runs at time t" IFF

[x ∈ Im(i) where i ∈ℕ+1] and [PM(t)=j] and [§M(t)=§M(0)] and

[(□M(t,PM(t)),...,□M(t,PM((t)+|x|))=x]]

and that "x runs" IFF

∃t ∈ℕ : x runs at time t

As  a  matter  of  convenience, we define two structures which will occur often throughout the 
rest of  the  discussion.   The  first structure "TP" is intended to describe a "Turing machine 
Program".  We may  think of such a program as a finite sequence of symbols such that each 
symbol is a member of the legal  tape  symbols  for  the  machine under consideration. We 
define TP as follows:

∀M∈TM, ∀v, ∀ i ∈ℕ+1, [v∈TPM → v ∈Im(i)]

The  second  structure  "TS"  is  intended  to  describe  a  non-empty  set  of  Turing  machine 
programs (Turing machine  program  Set)  and  is defined as:

∀M∈TM, ∀V, V ∈ TS → [ ∃v ∈ V and ∀v∈V, v ∈TPM]

The  use  of the subscript M (e.g. TPM) is unnecessary in those cases where only a single 
machine is  under  consideration  and no ambiguity  is  present.  We will  therefor  abbreviate 
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throughout this paper by removing the subscript when it is unnecessary.

Formal Definition of Viruses

We  now  define  the  central  concept under study, the "viral set".  In earlier statements, we 
informally defined a "virus" as a "program" that modifies other "programs" so as to include a 
(possibly "evolved") version of itself. In the mathematical embodiment of this definition for 
TMs, given below, we attempt to maintain the generality of this definition. We note that in the 
sense of a TM, there is no fundamental difference between data and program. We thus speak 
only of sequences in our TM discussion.

Several  previous  attempts  at definition have failed because the idea of a singleton "virus" 
makes the understanding of "evolution" of viruses very difficult, and as we will hopefully make 
clear,  this  is  a  central  theme  in  the  results  presented  herein.  The  "viral  set"  embodies 
evolution by allowing elements of such a set to produce other elements of that set as a result 
of computation. So long as each "virus" in a "viral set" produces some element of that "viral  
set" on some part of the tape outside of the original "virus", the set is considered "viral". Thus 
"evolution" may be described as the production of one element of a "viral set" from another 
element of that set.

The sequence of tape symbols we call "viruses" is a function of the machine on which they 
are to be interpreted. In particular, we may expect that a given sequence of symbols may be a 
"virus" when interpreted by one TM and not a "virus" when interpreted by another TM. Thus, 
we define the following pair "VS" as follows:

[1] ∀M, ∀V

[2] (M,V) ∈ VS IFF

[3] [V ∈ TS] and [M ∈ TM] and

[4] [∀v∈V [∀HM

[5] [∀t ∀j

[6]     [ 1) PM(t)=j and

[7] 2) §M(t)=§M0 and

[8] 3) (□M(t,j),...,□M(t,j+|v|-1))=v

[9]     ] ⇒

[10]     [ ∃ v'∈V [∃ t'>t [∃ j'

[11]     [ 1) [(j'+|v'|)≤j] or [(j+|v|)≤j'] and

[12] 2) (□M(t',j'),...,□M(t',j'+|v'|-1))=v' and

[13] 3) [∃ t'' : [t<t''<t'] and

[14] [PM(t'') ∈ {j',...,j'+|v'|-1}]]

[15] ]]] ]     ]

We will now review this definition line by line:
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[1] for all "M" and "V",
[2] the pair (M,V) is a "viral set" if and only if:
[3] V is a non-empty set of TM sequences and M is a TM and
[4] for each virus "v" in V, for all histories of machine M,
[5] For all times t and cells j
[6] if 1) the tape head is in front of cell j at time t and
[7] 2) TM is in its initial state at time t and
[8] 3) the tape cells starting at j hold the virus v
[9] then
[10]       there is a virus v' in V, a time t'>t, and place j' such that
[11] 1) at place j' far enough away from v
[12] 2) the tape cells starting at j' hold virus v'
[13] 3) and at some time t'' between time t and time t'
[14] v' is written by M

For convenience of space, we will use the expression

a  ⇒B C

to abbreviate part of the previous definition starting at line [4] where a, B, and C are specific 
instances of v, M, and V respectively as follows:

∀B, ∀C, (M,C) ∈ VS IFF C ∈ TS and M ∈ TM and ∀ a ∈ C, a ⇒B C

Before continuing, we should note some of the features of this definition and their motivation. 
We define the predicate VS over all Turing Machines.  We have also stated our definition so 
that  a  given element  of  a  viral set may generate any number of other elements of that set  
depending on the rest of the tape. This affords additional generality  without undue complexity 
or restriction.  Finally, we have no so called "conditional viruses" in that EVERY element  of  a 
viral set   must  ALWAYS  generate  another  element  of  that  set.   If  a "conditional virus" is  
desired, we may add conditionals  that either  cause  or prevent a virus from being executed 
as a function of the rest of the tape, without modifying this definition.

We may also say that V is a "viral set" w.r.t. M IFF

(M,V) ∈ VS]

and define the term "virus" w.r.t. M as

v ∈ V : (M,V) ∈ VS

We say that "v evolves into v' for M" IFF

(M,V) ∈ VS, v ∈ V and v' ∈ V and v  ⇒M {v'}

that "v' is evolved from v for M" IFF

"v evolves into v' for M"

and that "v' is an evolution of v for M" IFF

[(M,V) ∈ VS

[∃ i∈ℕ [∃ V' ∈ Vi
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[v ∈ V] and [v' ∈ V] and

[∀vk ∈ V' [vk ⇒M vk+1]] and

[∃ l ∈ ℕ

[∃ m ∈ ℕ

[[l < m] and [vl=v] and [vm=v']]]]]]]

In  other words, the transitive closure of ⇒M staring from v, contains v'.

Basic Theorems

At this point, we are ready to begin proving various properties of viral sets. Our most basic 
theorem states that any union of viral sets is also a viral set:

Theorem 1:

∀ M ∀ U* [∀ V ∈ U* (M,V) ∈ VS]  ⇒ [(M,∪ U*) ∈ VS]

Proof:

Define U= ∪ U*

by definition of ∪

1) [∀ v ∈ U [∃ V ∈ U* s.t. v ∈ V]]

2) [∀ V ∈ U* [∀ v ∈ V [v ∈ U]]]

Also by definition,

[(M,U) ∈ VS] IFF

[[V ∈ TS] and [M ∈ TM] and

[∀ v ∈ U [v ⇒M U]]]

by assumption,

[∀ V ∈ U* [∀ v ∈ V [v ⇒M V]]]

thus since

[∀ v ∈ U [∃ V ∈ U* [v ⇒M V]]]

and [∀ V ∈ U* [V ⊂ U]]

[∀ v ∈ U [∃ V ⊂ U [v ⇒M V]]]

hence [∀ v ∈ U [v ⇒M U]]

thus by definition, (M,U) ∈ VS

Q.E.D.

Knowing this, we prove that there is a "largest" viral set with respect to any machine, that set 
being the union of all viral sets w.r.t. that machine.

Lemma 1.1:
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[∀ M ∈ TM

[[∃ V [(M,V) ∈ VS]] ⇒

[∃ U

i) [(M,U) ∈ VS] and

ii) [∀ V [[(M,V) ∈ VS] ⇒

[∀ v ∈ V [v ∈ U]]]]]]]

We call U the "largest viral set" (LVS) w.r.t. M, and define

(M,U) ∈ LVS IFF [i and ii]

Proof:

assume [∃ V [(M,V) ∈ VS]]

choose U = ∪ {V s.t. [(M,V) ∈ VS]}

now prove i and ii

Proof of i: (by Theorem 1)

(M,[∪{V s.t. [(M,V) ∈ VS]}) ∈ VS

thus (M,U) ∈ VS

Proof of ii by contradiction:

assume ii) is false:

thus [∃ V s.t.

1) [(M,V) ∈ VS] and

2) [∃ v ∈ V s.t. [v ∉ U]]]

but [∀ V s.t. (M,V) ∈ VS

[∀ v ∈ V [v ∈ U]]] (definition of union)

thus [v ∉ U] and [v ∈ U] (contradiction)

thus ii) is true

Q.E.D.

Having defined the largest viral set w.r.t. a machine, we would now like to define a "smallest  
viral set" as a viral set of which no proper subset is a viral set w.r.t. the given machine. There  
may be many such sets for a given machine.

We define SVS as follows:

[∀ M [∀ V

[(M,V) ∈ SVS] IFF
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1) [(M,V) ∈ VS] and

2) [~∃ U s.t

[U ⊂ V] (proper subset) and

[(M,U) ∈ VS]]]]

We now prove that there is a machine for which the SVS is a singleton set, and that the  
minimal viral set is therefore singleton.

Theorem 2:

[∃ M [∃ V

i) [(M,V) ∈ SVS] and

ii) [|V|=1]]]

Proof: by demonstration

M: S={s0,s1}, I={0,1},

SxI N O D

---------------------------

s0,0 s0 0 0

s0,1 s1 1 +1

s1,0 s0 1 0

s1,1 s1 1 +1

|{(1)}|=1 (by definition of the operator)

[(M,{(1)}) ∈ SVS] IFF

1) [(M,{(1)}) ∈ VS] and

2) [(M,{}) ∉ VS]

(M,{}) ∉ VS (by definition since {} ∉ TS)

as can be verified by the reader:

(1) ⇒M {(1)} (t'=t+2, t''=t+1, j'=j+1)

thus (M,{(1)}) ∈ VS

Q.E.D.

A  simulation  of  this  TM  is  provided in the appendices to demonstrate that its operation is 
as claimed.

With  the  knowledge  that  the  above sequence is a singleton viral set and that it duplicates 
itself, we suspect that any  sequence which  duplicates itself is a virus w.r.t.  the machine on  
which it is self duplicating.
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Lemma 2.1:

[∀ M ∈ TM [∀ u ∈ TP

[[u ⇒M {u}] ⇒ [(M,{u}) ∈ VS]]]]

Proof:

by substitution into the definition of viruses:

[∀ M ∈ TM [∀ {u}

[[(M,{u}) ∈ VS] IFF

[[{u} ∈ TS] and [u ⇒M {u}]]]]

since [[u ∈ TP] ⇒ [{u} ∈ TS]] (definition of TS)

and by assumption,

[u ⇒M {u}]

[(M,{u}) ∈ VS]

Q.E.D.

The existence of a singleton SVS spurns interest in whether or not  there  are  other  sizes  of 
SVSs.   We show that for any finite integer i, there is a machine such that there is a viral  set  
with  I elements.   Thus,  SVSs  come  in  all  sizes.   We prove this fact by demonstrating a  
machine that generates the "(x mod i) +  1" th  element of  a  viral  set  from  the  xth  element 
of  that set.  In order to guarantee that it is an SVS, we force the machine to halt as  soon  as  
the  next  "evolution"  is  generated  so that no other element of the viral set is generated in 
the interim. Removing any  subset  of  the viral  set guarantees that some element of the 
resulting set cannot be generated by another  element  of the set.  If  we remove all  the 
elements from the set, we have an empty set, which by definition is not a viral set.

Theorem 3:

[∀ i ∈ [ℕ+1]

[∃ M ∈ TM [∃ V

1) [(M,V) ∈ SVS] and

2) [|V|=i]]]]

Proof: By demonstration

M: S={s0,s1,...,si}, I={0,1,...,i}, ∀ x ∈ {1,...,i}

SxI N O D

---------------------------

s0,0 s0 0 0 ; if I=0, halt

s0,x sx x +1 ; if I=x, goto state x, move right

... ; other states generalized as:
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sx,* sx [x|i]+1 0 ; write [x|i]+1, halt

proof of i)

define V={(1),(2),...,(i)}

|V|=i (by definition of operator)

proof of ii)

[(M,V) ∈ SVS] iff

1) [(M,V) ∈ VS] and

2) [~∃ U [[U ⊂ V] and [(M,U) ∈ VS]]]

proof of "1) (M,V) ∈ VS"

(1) ⇒M {(2)} (t'=t+2, t''=t+1, j'=j+1)

...

([i-1]) ⇒M {(i)} (t'=t+2, t''=t+1, j'=j+1)

(i) ⇒M {(1)} (t'=t+2, t''=t+1, j'=j+1)

and (1) ∈ V, ..., and (i) ∈ V

as can be verified by simulation

thus, [∀ v ∈ V [v ⇒M V]]

so (M,V) ∈ VS

proof of "2) [~∃ U [[U ⊂ V] and [(M,U) ∈ VS]]"

given [∃ t,j ∈ ℕ [∈ v ∈ V

[[□M(t,j) = v] and

[§M(t)=§M(0)] and

[PM (t)=j]]

    ⇒

[[M halts at time t+2] and

[v|i]+1 is written at j+1 at t+1]]]

(as may be verified by simulation)

and [∀x ∈{1,...,i} [(x) ∈V]] (by definition of V)

and [∀x ∈{1,...,i} [x ⇒M {[x|i]+1}]]

we conclude that:

[x|i]+1 is the ONLY symbol written outside of (x)

thus [~∃ x' ≠ [x|i]+1 [x ⇒M {x'}]]

now [∀ (x) ∈ V
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[([x|i]+1) ∉ V ⇒ [(x) ∉ V]]]

assume [∃ U ⊂ V [(M,U) ∈ VS]]

[U={}] ⇒ [(M,U) ∉ VS] thus U ≠ {}

by definition of proper subset

[U ⊂ V] ⇒ [∃ v ∈ V [v ∉ U]]

but [∃ v ∈ V [v ∉ U]]

⇒ [∃ v' ∈ U [[v'|i]+1=v]

and [v ∉ U]

and [~∃ v'' ∈ V [v' ⇒M v'']]]

thus [~∃ v ∈ U [v' ⇒M V]]

and [v' ∈ U]

thus [(M,U) ∉ VS] which is a contradiction

Q.E.D.

Again, a demonstration of this TM is provided in the appendices for independent verification 
of its operation.

Theorem 4:

[∃ M ∈ TM [∃ V ∈ TS s.t.

1) [(M,V) ∈ VS] and

2) [|V|=|ℕ|]

Proof by demonstration:

S,I N O D

-----------------------------

M: S0,L S1 L +1 ;start with L

S0,else S0 X 0 ;or halt

S1,0 C(0,X,R) ;change 0s to Xs till R

S2,R S3 R +1 ;write R

S3 S4 L +1 ;write L

S4 S5 X 0 ;write X

S5 L(R) ;move left till R

S6 L(X or L) ;move left till X or L

S7,L S11 L 0 ;if L goto s11

S7,X S8 0 +1 ;if X replace with 0



Page 24

S8 R(X) ;move right till X

S9,X S10 0 +1 ;change to 0, move right

S10 S5 X 0 ;write X and goto S5

S11 R(X) ;move right till X

S12 S13 0 +1 ;add one 0

S13 S13 R 0 ;halt with R on tape

V={(L0R),(L00R),...,(L0...0R),...}

proof of 1) (M,V) ∈ VS

definition:

[∀ M ∈ TM [∀ V [(M,V) ∈ VS] IFF [[V ∈ TS] and [∀ v ∈ V [v ⇒M V]]]]]]

by inspection,

[V ∈ TS]

now [∀ (L0...0R) [∃ (L0...00R) ∈ V

[(L0...0R) ⇒M {(L0...00R)}]]] (may be verified by simulation)

thus [(M,V) ∈ VS]

proof of 2) |V|=|ℕ|

[∀ vn ∈ V [∃ vn+1 ∈ V

[∀ k ≤ n [~∃ vk ∈ V [vk=vn+1]]]]

this is the same form as the definition of ℕ, hence |V|=|ℕ|

Q.E.D

This  program  is  also  demonstrated  in  the  appendices  to demonstrate its operation and 
correctness.

As   a   side   issue,   we   show  the  same  machine  has  a  countably  infinite  number  of 
sequences  that  are  not  viral  sequences,  thus proving that no finite state machine can be  
given to determine whether or not  a given (M,V)  pair  is "viral"  by simply enumerating all  
viruses (from Theorem 4) or by simply enumerating all non viruses (by Lemma 4.1).

Lemma 4.1:

[∃ M ∈ TM [∃ W ∈ TS

1) [|W|=|ℕ|] and

2) [∀ w ∈ W [~∃ W' ⊂ W

[w ⇒M W']]]]]

Proof:

using M from Theorem 4, we choose

W={(X),(XX),...,(X....X),...}
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clearly[M ∈ TM] and [W ∈ TS] and [|W|=|ℕ|]

since (from the state table)

[∀ w ∈ W [w runs at time t] ⇒ [w halts at time t]]

[~∃ t'>t [PM(t') ≠ PM(t)]]

thus [∀ w ∈ W [~∃ W' ⊂ W [w ⇒M W']]]

Q.E.D.

It  turns out that the above case is an example of a viral set that has no SVS.  This is because  
no matter how many elements of V are removed from the front of V, the set can always have 
another  element removed without making it nonviral.

We  also  wish  to  show  that there are machines for which no sequences are viruses, and do 
this  trivially  below  by  defining  a machine which always halts without moving the tape head.

Lemma 4.2:

[∃ M ∈ TM [~∃ V ∈ TS [(M,V) ∈ VS]]]

Proof by demonstration:

S,I N O D

M: s0,all s0 0 0

(trivially verified that ∀ t, PM(t)=P0)

Q.E.D.

We  now show that for ANY finite sequence of tape symbols "v", it is possible to construct a 
machine for which  that  sequence  is  a virus.   As a side issue, this particular  machine is  
such that LVS=SVS, and thus no sequence other than "v" is a virus  w.r.t.   This machine. 
We  form  this  machine by generating a finite "recognizer" that examines successive cells of  
the tape, and halts unless  each  cell in order is the appropriate element of v.  If each cell is  
appropriate we replicate v and subsequently halt.

Theorem 5:

[∀ v ∈ TP [∃ M ∈ TM [(M,{v}) ∈ VS]]]

Proof by demonstration:

v={v0,v2,...,vk} where [k ∈ ℕ] and [v ∈ I@+<i>]

(definition of TP)

S,I N O D

----------------------------

M: s0,v0 s1 v0 +1 (recognize 1st element of v)

s0,else s0 0 0 (or halt)
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... (etc till)

sk,vk sk+1 vk +1 (recognize kth element of v)

sk,else s0 0 0 (or halt)

sk+1 sk+2 v0 +1 (output 1st element of v)

... (etc till)

sk+k sk+k vk +0 (output kth element of v)

it is trivially verified that [v ⇒M {v}]

and hence (by Lemma 2.1) [(M,{v}) ∈ VS]

Q.E.D.

With  this  knowledge,  we can easily generate a machine which recognizes any of a finite  
number of finite  sequences  and  generates either a copy of that sequence (if we wish each 
to be an SVS), another element  of  that set (if  we wish to have a complex dependency 
between subsequent viruses), a given sequence in that set (if we wish to  have only  one 
SVS), or each of the elements of that set in sequence (if we wish to have LVS=SVS).

 We  will  again  define a set of macros to simplify our task. This time, our macros will be the 
"recognize"  macro,  the  "generate" macro, the "if-then-else" macro, and the "pair" macro.

The  "recognize" macro simply recognizes a finite sequence and leaves the machine in one of 
two states depending  on  the  result  of recognition.   It leaves the tape at its initial point if the  
sequence is not recognized so that successive recognize macros may be  used  to recognize 
any  of a set of sequences starting at a given place on the tape without additional difficulties.  
It leaves the tape at the  cell one  past  the  end  of  the sequence if recognition succeeds, so 
that another sequence can be  added  outside of the recognized  sequence without additional  
difficulty.

S,I N O D

------------------------------------------

recognize(v) for v of size z

sn,v0 sn+1 v0 +1 (recognize 0th element)

sn,* sn+z+z-1 * 0 (or rewind 0)

... (etc till)

sn+k,vk sn+k+1 vk +1 (recognize kth element)

sn+k,* sn+z+z-k  * -1 (or rewind tape)

... (etc till)

Sn+z-1,vz Sn+z+z vz +1 (recognize the last one)

Sn+z-1,* Sn+z vz +1 (or rewind tape)

Sn+z,* Sn+z+1 * -1 (rewind tape one square)

... (for each of k states)
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Sn+z+z-1 ("didn't recognize" state)

Sn+z+z ("did recognize" state)

The  "generate"  macro  simply  generates  a  given  sequence  starting  at  the  current  tape 
location:

S,I N O D

generate(v) where v is of length k

Sn Sn+1 v0 +1

...

Sn+k Sn+k+1 vk +0

The  "if-then-else" macro consists of a "recognize" macro on a given sequence, and 
goes to a next state corresponding to the  initial state of the "then" result if the recognize 
macro succeeds, and to the next  state corresponding to the initial state of the "else" result if  
the recognize macro fails:

S,I N O D

-------------------------

if (v) (then-state) else (else-state)

Sn recognize(v)

Sn+2|v|-1,* else-state * 0

Sn+2|v|,* then-state * 0

The  "pair"  macro  simply  appends  one sequence of states to another, and thus forms 
a combination of two sequences into  a  single sequence.   The resulting state table is just the  
concatenation of the state tables:

S,I N O D

----------------------------

pair(a,b)

Sn a

Sm b

We may now write the previous machine "M" as:

if (v) (pair(generate(v),halt)) else (halt)

We  can  also  form a machine which recognizes any of a finite number of sequences and 
generates copies,

if (v0) (pair(generate(v0),halt)) else

if (v1) (pair(generate(v1),halt)) else
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...

if (vk) (pair(generate(vk),halt)) else (halt)

a  machine  which  generates  the  "next"  virus in a finite "ring" of viruses from the "previous"  
virus,

if (v0) (pair(generate(v1),halt)) else

if (v1) (pair(generate(v2),halt)) else

...

if (vk) (pair(generate(v0),halt)) else (halt)

and a machine which generates any desired dependency.

if (v0) (pair(generate(vx),halt)) else

if (v1) (pair(generate(vy),halt)) else

...

if (vk) (pair(generate(vz),halt)) else (halt)

where vx, vy, ...,vz ∈ {v1,...,vk}

We  provide  a  demonstration of a simple "recognize generate" virus of the above sort in the  
appendices.

We now  show  a  machine  for which every sequence is a virus, as is shown in the following 
simple lemma.

Lemma 5.1:

[∃ M ∈ TM

[∀ v ∈ TP [∃ V

[[v ∈ V] and [(M,V) ∈ LVS]]]]]

Proof by demonstration:

I={X}, S={s0}

S,I N O D

M: s0,X s0 X +1

trivially seen from state table:

[∀ time t [∀ § [∀ P [not M halts]]]]

and [∀ n ∈ ℕ [∀ v ∈ I@+<n>

[[v ⇒M {(X)}] and [(M,{(X),v}) ∈ LVS]]]]

hence [∀ v ∈ TP [(M,{v,(X)}) ∈ VS]]

and by Theorem 1, [∃ V [[v ∈ V] and [(M,V) ∈ LVS]]]

Q.E.D.
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Computability Aspects of Viruses and Viral Detection

We  can clearly generate a wide variety of viral sets, and the use of macros is quite 
helpful in pointing this out. Rather than follow this line through the enumeration of any number 
of other examples of viral sets, we would like to determine the power of viruses in a more 
general manner. In particular, we will explore three issues.

The "decidability" issue addresses the question of whether or not we can write a TM program 
capable of determining, in a finite time, whether or not a given sequence for a given TM is a  
virus. The "evolution" issue addresses the question of whether we can write a TM program 
capable of determining, in a finite time, whether or not a given sequence for a given TM 
"generates" another given sequence for that machine. The "computability" issue addresses 
the question of determining the class of sequences that can be "evolved" by viruses.

We now show that it is undecidable whether or not a given (M,V) pair is a viral set. This is  
done by reduction from the halting problem in the following manner. We take an arbitrary 
machine M' and tape sequence V', and generate a machine M and tape sequence V such that 
M copies V'  from inside of V,  simulates the execution of M'  on V',  and if  V'  halts  on M',  
replicates V. Thus, V replicates itself if and only if V' would halt on machine M'. We know that  
the "halting problem" is undecidable @cite[Turing], that any program that replicates itself is a 
virus [Lemma 2.1], and thus that [(M,V) ∈ VS] is undecidable.

Theorem 6:

[~∃ D ∈ TM [∃ s1 ∈ §D

[∀ M ∈ TM [∀ V ∈ TS

1) [D halts] and

2) [§D(t) = s1] iff [(M,V) ∈ VS]]]]]

Proof by reduction from the Halting Problem:

[∀ M ∈ TM [∃ M' ∈ TM

["L" ∉ IM'] and ["R" ∉ IM'] and

["l" ∉ IM'] and ["r" ∉ IM'] and

[∀ §M' [IM' = "r"] ⇒

[[NM'=§M'] and [OM'="r"] and [DM'=+1]]]

and [∀ §M

[[NM=§M] and [OM=IM] and [DM=0]]

    ⇒ [[NM'=§x] and [IM'=IM] and DM'=0]]]

]]

We  must  take  some care in defining the machine M' to assure that it CANNOT write a viral  
sequence, and that  it  CANNOT  overwrite the critical portion of V which will  cause V to 
replicate  if  M'  halts.  Thus,   we  restrict  the  "simulated"  (M',V')  pair  by  requiring  that  the 
symbols L,R,l,r not be used by them.  This restriction is without loss of generality, since we 
can systematically replace any  occurrences  of these  symbols in M' without changing the 
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computation performed or its halting characteristics.  We have again taken special care  to 
assure that (M',V') cannot interfere with the sequence V by restricting M' so that in ANY state, 
if the symbol "l" is encountered, the state remains unchanged,  and  the tape moves right by  
one square.  This effectively simulates the "semi-infinite" end of the tape, and forces M' to  
remain in an area outside of V.  Finally, we have restricted M' such that for all states such that 
"M halts", M' goes to state §x.

now by @cite[Turing]

[~∃ D ∈ TM

[∀ M' ∈ TM [∀ V' ∈ TS

1) [D halts] and

2) [§D(t) = s1] iff [(M',V') halts]]]]

We now construct (M,V) s.t.

[(M,V) ∈ VS] iff [(M',V') Halts]

as follows:

S,I N O D

------------------------------

M: s0,L S1 L 0 ;if "L" then continue

s0,else S0 X 0 ;else halt

s1 CPY("l","r","R") ;Copy from l till r after R

s2 L("L") ;left till "L"

s3 R("R") ;right till "R"

s4 s5 l +1 ;move to start of (M',V')

s5 M' ;the program M' goes here

sx L("L") ;move left till "L"

sx+1 CPY("L","R","R") ;Copy from L till R after R

V={(L,l,v',r,R)}

Since  the  machine  M requires the symbol "L" to be under the tape head in state s0 in order  
for any program to not halt immediately upon execution, and since we have restricted the 
simulation of  M'  to not  allow  the symbol "L" to be written or contained in v', M' CANNOT  
generate a virus.

∀ t ∈ ℕ [∀ §M ≤ sx

[~∃ PM(t) [[I ≠ "L"] and [O="L"]]]]]

This  restricts  the  ability  to  generate  members  of  VS such that  V only  produces symbols 
containing the symbol "L" in state s0 and sx+1, and thus these are the ONLY states in which 
replication can take place. Since s0 can only write 'L' if it is already present, it cannot be used  
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to write a virus that was not previously present.

[∀ t ∈ ℕ [∀ s (s5 ≤ s ≤ sx)

[not [M' halts at time t]] and [P@-<M>(t+1) not within V]]]

If the execution of M' on V' never halts, then sx+1 is never reached, and thus (M,V) can not be 
a virus.

[∀ Z ∈ TP s.t. Z@-<0> ≠ "L"]

[M run on Z at time t] ⇒ [M halts at time t+1]

[(M',V') Halts] iff

[~∃ t ∈ ℕ s.t. §M(t)=sx+1]

thus [not (M',V') Halts] ⇒ [(M,V) ∉ VS]

Since sx+1 replicates v after the final "R" in v, M' halts ⇒ that V is a viral set w.r.t. M

[∃ t ∈ ℕ s.t. §M(t)=sx+1] ⇒

[∀ v ∈ V s.t. [v ⇒M {V}]]

and from Lemma 2.1

[∀ v ∈ V v ⇒M V] ⇒ [(M,V) ∈ VS]

thus  [(M,V) ∈ VS] iff [(M',V') Halts]

and by @cite[Turing]

[~∃ D ∈ TM

[∀ M' ∈ TM [∀ V' ∈ TS

1) [D halts] and

2) [§D(t) = s1] iff [(M',V') halts]]]]

thus

[~∃ D ∈ TM

[∀ M ∈ TM [∀ V ∈ TS

1) [D halts] and

2) [§D(t) = s1] iff [(M,V) ∈ VS]]]]

Q.E.D.

We  now  answer the question of viral "evolution" quite easily by changing the above example 
so that it replicates (state 0')  before running  V'  on  M',  and generates v' iff (M',V') halts.  The 
initial self replication forces [(M,V) ∈ VS], while the generation of  v' iff  (M',V')  halts, makes 
the  question  of  whether  v'  can  be  "evolved"  from v  undecidable.  v'  can be any  desired 
sequence a, and if it is a virus and not v, it is an evolution of v iff (M',V') halts. As an example,  
v' could be v with a slightly different sequence V'' in place of V'.

Lemma 6.1:
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[~∃ D ∈ TM

[∀ (M,V) ∈ VS

[∀ v ∈ V [∀ v'

1) [D halts] and

2) [S(t) = s1] iff [v ⇒M {v'}]]]]]

sketch of proof by demonstration:

modify machine M above s.t.:

M: s0,L S0' L 0 ;if "L" then continue

s0,else S0 X 0 ;else halt

s0' CPY("L","R","R") ;replicate initial virus

s0'' L("L") ;return to replicated "L"

s1 CPY("l","r","R") ;Copy from l till r after R

s2 L("L") ;left till "L"

s3 R("r") ;right till "R"

s4 s5 r +1 ;move to start of (M',V')

s5 M' ;the program M' goes here

sx L("L") ;move left till "L"

sx+1 R("R") ;move right till "R"

sx+2 s9+k "R" +1 ;get into available space

sx+3 generate(v') ;and generate v'

assume [v' is a virus w.r.t. M]

since [sx+3 is reached] iff [(M',V') halts]

thus [v' is generated] iff [(M',V') halts]

Q.E.D.

We  are  now  ready  to  determine  just  how  powerful  viral evolution is as a means of  
computation.  Since we have shown  that  an arbitrary  machine can be embedded within a  
virus (Theorem 6), we will now choose a particular class of machines to embed to get a  class 
of viruses with the property that the successive members of the viral set generated  from any 
particular member of the set, contain subsequences which are (in Turing's notation) the of 
successive  iterations   of   the  "Universal   Computing   Machine"   @cite[Turing].   The 
successive members are called "evolutions" of the previous members, and thus any number 
that can  be "computed" by a TM, can be "evolved" by a virus.  We therefore conclude that  
"viruses" are at least as powerful a class of  computing machines  as  TMs, and that there is a 
"Universal Viral Machine" which can evolve any "computable" number.

Theorem 7:
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[∀ M' ∈ TM [∃ (M,V) ∈ VS

[∀ i ∈ ℕ

[∀ x ∈ {0,1}i [x ∈ HM']

[∃ v ∈ V [∃ v' ∈ V

[[v "evolves" into v'] and [x ⊂ v']]

]]]]]]

Proof by demonstration:

by @cite[Turing]:

[∀ M' ∈ TM [∃ UTM ∈ TM [∃ "D.N" ∈ TS

[∀ i ∈ ℕ

[∀ x ∈ {0,1}i [x ∈ HM']]]]]]

Using  the  original  description  of the "Universal Computing Machine" @cite[Turing], we 
modify the UTM so that each successive iteration of the UTM interpretation of an "D.N" is 
done with a new copy  of  the "D.N"  which  is created by replicating the modified version 
resulting from the  previous iteration into  an area of  the  tape beyond that   used by  the 
previous  iteration.   We  will  not  write  down  the entire description of the UTM, but rather 
just the relevant portions.

SxI N O D

-------------------------

b: f(b1,b1,"::") ;initial states of UTM print out

b1: R,R,P:,R,R,PD,R,R,PA anf;:DA on the f-squares after ::

anf: ;this is where UTM loops

... ;the interpretation states follow

ov: anf ;and the machine loops back to anf

We modify the machine as in the case of Theorem 6 except that:

we replace:

ov: anf ;goto "anf"

with:

ov: g(ov',"r") ;write an "r"

ov': L("L") ;go left till "L"

ov'': CPY("L","R","R");replicate virus

ov''': L("L") ;left till start of the evolution

ov'''': R("r") ;right till marked "r"

ov''''':anf ;goto "anf"
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and [∀ S@-<UTM> [I@-<UTM>="R"] ⇒

<move right 1, write "R", move left 1, continue as before>

The   modification  of  the  "anf"  state  breaks  the  normal interpretation loop of the UTM, and 
replaces  it  with  a  replication into which we then position the tape head so that upon return 
to "anf" the  machine  will  operate  as before over a different portion of the tape.  The second  
modification  assures  that  from  any  state  that reaches  the right end of the virus "R", the R 
will be moved right one tape square, the tape will be  repositioned  as  it  was  before  this 
movement,  and  the  operation  will  proceed  as  before.  Thus, tape expansion does not  
eliminate the right side marker of the  virus.   We now specify a class of viruses as:

("L","D.N","R")

and M as:

SxI N O D

--------------------------

s0,L s1 L +1 ;start with "L"

s0,else s0 else 0 ;or halt

s1 ... ;states from modified UTM

The Modified Subject Object Model
We now examine computer viruses in terms of the subject object protection model 

@cite[Harrison].  We define a "universal  protection machine" (UPM) which generalizes the 
subject object model by combining it with the Turing machine definition @cite[Turing]. The 
resultant structure appears to be a good model of a computer with an operating system. We 
then show that a virus can infect an object e if some subject can both read an infected object i 
and write  e. We show that the transitivity property holds for infection, and that a virus can 
therefor  spread  to  the  transitive  closure  of  information  paths  from an  initial  source.  We 
discuss an extension of the UPM to model computer networks, and comment further on the 
model.

A Protection Model

A protection system is defined in terms of the rights of subjects to objects @cite[Harrison]. We 
are  primarily  concerned  here  with  the  "read"  and  "write"  rights  r and  w,  in  a  static 
configuration of  a protection system. A  protection system is  defined by a triple  (S,  O,  P) 
where; S is a set of subjects; O is a set of objects; and P is an access matrix, with a row for 
every subject in S, and a column for every object in O.

It is common in modern computer systems to have a set of "users" with access to a set of 
"files",  and  the  subjects  and  objects  in  this  model  may  be  thought  of  as  corresponding 
respectively to users and files, with access rights being "read" and "write". In general, the 
model is not limited to this view. Another perspective might be that each "subject" is a robot,  
and each "object" is a physical world object, with access rights being the ability of robots to 
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touch, move, tool, and restrict access to objects.

An Access Matrix

 o0 o1 o2 o3

+-------------------+

s0 | rw | r- | -- | -w |

+-------------------+

s1 | r- | rw | rw | r- |

+-------------------+

The above example of an access matrix shows a protection system with two subjects (s0 and 
s1), and four objects (o0, o1, o2, o3). Each element of the access matrix contains an 'r' if the 
corresponding subject  can read the  corresponding object,  and  a  'w'  if  the  corresponding 
subject can write the corresponding object. Thus, subject s0 can read objects  o0, and o1, 
and can write o0 and o3; while s1 can read o0, o1, o2, and o3, and write o1 and o2.

In our analysis, we will assume that all objects are finite sequences of symbols representing 
either the D.N of a UTM program @cite[Turing], or data for interpretation by such a program, 
and that two rights are of primary interest; the generic read right which enables a subject to 
examine the symbol  sequence of  an object;  and the generic  write right  which enables a 
subject to set the symbol sequence of an object.

Although we will  be primarily  discussing the case where the access matrix  is  in a  static  
configuration,  dynamic  configurations  are   also  of  considerable  interest.  We note  that  in 
Harrison,  Ruzzo  and  Ullman  @cite[Harrison],  it  has  been  proven  that  "It  is  undecidable 
whether a given configuration of a given protection system is 'safe' for a generic right", where 
safety implies that no right to an object can be "leaked" to a subject without the permission of  
the "owner" of that object.

A Universal Protection Machine

In order to model the mutual effects of computation and protection, we specify a model 
which  allows  the  features  of  the  Turing  machine to  be  combined  with  the  features  of  a  
protection system. We specify  a "Universal  Protection Machine" (UPM) wherein any finite 
number of subjects and objects may coexist. The UPM simulates the interpretation of objects 
by subjects and uses some decidable scheduling algorithm to determine which subject  is 
simulated on each successive move.

The UPM maintains a subject object matrix, the current sequences representing all objects, 
the sequence of objects remaining to be interpreted by each user, current tape sequences, 
states, and tape positions of each sequence under interpretation; and mediates the rights of 
subjects to objects, the scheduling process which determines after each subject's move which 
subject is allocated the next move, and the effects of subjects and objects on each other.

We show here the manner in which information may be stored in such a machine so that an 
appropriate TM would be able to perform all necessary operations using finite time and space. 
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We then describe procedures which a UPM might use in performing the required operations. 
We note that in order to strictly prove that such a machine is possible, we would have to 
construct a state table which would actually carry out these operations, or prove that such a 
state table exists. Although this would likely be of some interest, the space that a formal proof 
would require would be quite more than we wish to dedicate to this problem. We will instead,  
make an informal but accurate case for the existence of such a state table, and move on to 
the ramifications of the existence of such a machine.

We begin by specifying the sequence stored on the semi-infinite tape of the UPM. The UPM 
maintains  information  in  much  the  same  manner  as  a  Universal  Computing  Machine 
@cite[Turing], wherein a finite set of special purpose symbols are used to preface each type 
of information. We first give a generic description of a UPM tape contents, and then detail the 
symbols used in the description.

The tape consists of eight distinct sections, all but the last consisting of a finite number of  
symbols, and each representing a different aspect of the UPM. These sections are as follows:

The left of the tape

The Subject/Object Matrix

The remaining objects to be "run" by each subject

The sequences representing the current objects

The current tape sequences and markings under interpretation

The temporary use area

The right of tape

The rest of the tape

As in the Universal Computing Machine, we will use every other square for the storage of 
most of the information of use to us, and use the intervening squares for the operation of the 
machine itself. We now specify each of the above listed sections of the tape in further detail.

The left of tape is signified by the symbol "L":

L left of tape

The Subject/Object  matrix  is  bracketed by "S/O"  and "O/S",  with  each row of  the matrix 
representing a given subject initiated by "S" followed by the appropriate number of s's to 
indicate  the  subject  number.  Within  each  row,  each  column  indicating  a  given  object  is 
indicated by an "O" followed by an appropriate number of o's to indicate the object number.  
Within each subject  object  pair,  each generic right  is indicated by an "R" followed by an 
appropriate number of r's indicating a given right number.

S/O subject/object matrix

S the start of a subject

ss...s the subject number indicated by the number of s's

O the start of an object

oo...o the object number indicated by the number of o's
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R the generic right

rr...r the right number indicated by the number of r's

...

R

rr..r as many rights as needed

O

oo..o the next object

...

O

oo.o the last object for that subject

S

ss..s the next subject

...

O/S the end of the subject object matrix

The  sequence  of  object  numbers  of  objects  awaiting  interpretation  for  each  subject  are 
maintained in the "run list" which is bracketed on the left by "R/L" and on the right by "L/R".  
Each subject with objects awaiting interpretation is indicated by an entry "S" followed by an 
appropriate number of s's to indicate the subject number. Each object awaiting interpretation 
by  that  subject  is  indicated  following  the  subject  indicator  by  an  "O"  followed  by  an 
appropriate number of o's. We note that each subject may only have a finite sequence of  
objects in its run list.

R/L The start of the run list

S A new subject

ss...s The subject number

O The next object to be interpreted

oo...o The object number

...

O The last object to be interpreted for that subject

oo..o Its object number

S The next subject

ss..s The subject number

... etc.

L/R The end of the run list

Each of the current objects is itself the D.N of a Universal Computing Machine tape, and as 
such is  described in  the  same manner  as tapes are described in  Turing's  original  paper 
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@cite[Turing] and we will not describe them further here. Each D.N is denoted by the object  
number, and the set of objects are bracketed by "B/O" and "O/B":

B/O Beginning of objects

O Object start

oo...o Object number

D.N D.N of object

...

O Last object start

oo..o Object number

D.N D.N of object

O/B End of objects

Each sequence interpretable at any given instant (a "process" in descriptions of operating 
systems), has a representative tape sequence which is generated by the sequence of the 
object being interpreted at the initial invocation of interpretation, the moves which have been 
made in that interpretation by the UPM, and any effects of read or written sequences. The 
state of a process at any given instant is completely described by the D.N and markings of  
that process as it appears on the tape at the end of its last move @cite[Turing]. The set of 
D.Ns currently being interpreted are bracketed by "C/P" and "P/C", and each sequence is 
prefaced by an "S" followed by an appropriate number of s's to indicate the subject number 
for which that D.N is operating. We note that since the D.N and marking include the marking 
of  the current  state of  the program and the current  position of the tape head within  that 
program, these need not be stored independently.

C/P Current sequences beginning

S Start of a subject

ss...s Subject number

D.N+M D.N and Marking of a tape sequence

...

S Start of a last subject

ss..s Subject number

D.N+M D.N and Marking of a tape sequence

P/C End of current sequences

The temporary use area is used by the UPM to store the sequence being interpreted at any 
given  instant,  and  for  other  temporary  use  as  required,  and  may  contain  any  required 
sequence. The right of tape is used to keep track of the right most place on the tape at any 
given moment, and is denoted by the symbol "R".

R The right of the tape

We note that for finite subjects, objects, and other sequences, the tape contents are finite, 
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and  are  representable  in  a  finite  number  of  symbols,  and  that  we  can  thus  place  this 
information on the tape of a TM.

Operation of the Universal Protection Machine

We now briefly summarize the operation of the UPM by description without formally 
specifying  its  operation.  Perhaps the  most  important  aspect  of  our  description  is  that  all 
operations and information stored as a result of these operations are finite, and can thus be 
performed in a finite number of moves of a TM. If all of these operations are possible for a  
TM, and if they can all be performed in finite time, then we can be certain that a D.N of a TM 
exists for implementing the UPM, even if we cannot easily generate it herein. The existence of 
a D.N for this purpose is sufficient for almost any demonstrations that an actual description 
would be useful for, and thus we do not attempt to generate an actual description.

Initial  State: the UPM invokes a finite run time algorithm for  determining the "next 
subject" (S) to be interpreted  as a function of the contents  of  the  tape between "left  
of tape" and "right of tape" without changing that contents. Goto One Move.

The  Initial  State of  this  machine is  essentially  a  scheduler  to  determine  the  next 
subject  to  be  granted  a  move.  We  have  allowed  the  greatest  possible  flexibility  in  this 
scheduler, and only require that the next subject be determined in a finite amount of time 
without effecting the rest of the relevant UPM tape. In practice, we may only be interested in  
certain classes of schedulers (e.g. "fair schedulers") in any given application, and we note 
that in our later discussion, we may demonstrate the existence of particular schedules that 
allow a given activity to occur.

One Move: Once S has been determined, the UPM moves to the "C/P" area of the 
tape and seeks out a "current program" sequence for S. If no such sequence exists, 
goto Next Run, otherwise goto Run On.

The One Move submachine arranges to make a single move for a given subject by locating 
the current  program (C/P) for that subject or arranging to load a new program if  none is 
current.

Run On: Copy the subject number and "current program" sequence to the temporary 
area, and shift all information to the right of the copied area left so as to cover the 
copied area. Now move to the temporary area, and perform one move for the program 
stored there. If  the program in the temporary area halts on this move, move to the 
beginning of the temporary area, enter "R", and goto Initial State. If the move causes a 
"special state" to be entered, goto Special State. Otherwise, append "P/C" and "R" to 
the temporary area, and shift the temporary area one square left, thus overwriting the 
previous P/C marker, and extending the C/P area to include the temporary area used 
by the "current program". Goto Initial State.

The Run On submachine actually makes a single move for the current subject by copying the 
C/P for that subject to the temporary area at the end of the tape, overwriting its old copy with 
the rest of the C/P area, simulating a single move, and if the program didn't halt, appending 
the resulting sequence to the C/P area. The particular manner in which this is done assures 
that the old state of the C/P is overwritten so that subsequent searches of the C/P area will 
only find the new C/P. We are also assured that the tape does not grow without cause by  
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leaving no excess areas in the middle of the tape.

By moving the C/P to the end of the tape, we assure that if the current move extends the tape 
of the C/P, we do not have to move additional information (except the "R" marker) to the right  
to deal with this event. Finally we note that a simple "fair scheduler" could be generated by 
always appending the "next run" object of any user not in the C/P area to the C/P area, and 
always running the first entry in the C/P area. Since each program is moved to the end of the 
C/P  area  with  every  move,  this  implements  a  "round  robin"  scheduler  which  is  "fair" 
@cite(Brinch-Hansen).

In the case that the sequence halts, the  Run On submachine does not add the temporary 
area  to  the  C/P  area,  and  thus  the  program  automatically  leaves  the  C/P  area  upon 
termination. The only other possibility is that the move causes the C/P to enter a  Special 
State which will be described a little later.

Next Run: The UPM moves to the "run list" section of the tape, and seeks out an entry 
for S. If no such entry exists, goto Initial State, otherwise determine the object number 
(O) of the next object to be interpreted for subject S, and overwrite the marking for that 
object in the run list by shifting the remainder of the tape left. Goto Load Object.

The  Next  Run submachine  is  used  in  the  case  that  there  is  no  C/P sequence  for  the 
scheduled subject in the C/P area. In this case, the object number of the  next object to be run 
for that subject is sought in the "run list". If no such object if found, the scheduler is again  
called  upon  to  determine  the  next  subject  to  be  scheduled.  Otherwise,  the  object  to  be 
scheduled next is loaded via the  Load Object submachine. We note here that a scheduler 
that selects a subject which has no run list entry or C/P sequence for execution may result in 
an infinite loop with no further moves being interpreted. Finally, we note that the  Next Run 
submachine overwrites the marking for each object to be run as soon as it is determined, so  
that subsequent run list searches will not find the marking again, and space is not wasted.

Load Object: If the entry in S/O for (S,O) does not include the "read" right, or if no 
such object exists, goto Initial State. Append "S" and the proper number of s's to the 
C/P area to indicate the beginning of the current running program for subject S. Move 
to the B/O area and seek out the beginning of object O. Copy the sequence stored for 
the object O to the end of the C/P area so that it is appended to the marker for subject 
S, and append the P/C and R markers to properly end the tape. Goto One Move.

The Load Object submachine uses the result of the Next Run submachine to determine the 
object from the object list to be interpreted on behalf of the requesting subject. If there is no 
such object or if the object to be interpreted is not "readable" by the requesting subject, the 
object is treated as if it did not exist, and the requested run is simply ignored. If the object 
exists and is accessible by the subject, it is copied to the temporary area with the subject  
marker prepended to its description, and one move is made for the program in the normal 
fashion. We are thus guaranteed at least one move for each program loaded.

We note here that the stringency in this submachine is often not required of actual protection 
systems because the "run" right is often considered different from the "read" right, and strictly 
speaking we should base the running of a program on a generic "run" right. In fact, many 
would claim that  allowing the "run" of  a program has no effect on security  or integrity  of 
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information as long as "read" and "write" checks are made on all information accessed by that  
program. The above check is necessary if we consider that information about an object may 
be leaked if it produces any output that is readable by a subject that could not read the object  
itself. Even the knowledge that the given object exists leaks one bit of information about the 
object, and thus we must treat the object as if it doesn't exist unless the subject requesting its  
use has read access to the object.

Special State: Perform the appropriate operations for a special state operation.

Finally,  we  come to  the  Special  State submachine  which  is  a  generic  submachine  that 
invokes all operations not exclusively limited to the moves of a TM as described by the D.N of  
a single object. The Special State is like a "monitor call" in an operating system that allows 
an object acting as a surrogate for a subject to request services on behalf of that subject from 
the underlying UPM. A typical example of such a special state would be a state which is  
predefined by the UPM to request the reading of an object into tape squares of the current  
program. We will be discussing special cases of this Special State in later sections, and note 
here that since the Special State has access to the entire UPM tape, all Special State cases 
must maintain protection restrictions for the UPM to operate correctly.

At this point we argue that the above specifications, with the exception of the Special State 
submachine, specify TM programs which are implementable with finite time algorithms and 
which take finite  space on the UPM tape for  all  finite  initial  states and finite  numbers of 
moves. We thus conclude and postulate that such a machine exists, even if we have not 
explicitly  specified  it.  We further  postulate  that  as  long  as  all  Special  States  of  such a 
machine fit the above criteria, the resulting machine exists.

A Model of Computers

Rather than work with this complex description of the UPM, we abstract out the details 
of UPM operation in favor of an operational model. We thus define a computer as:

(1) an interpretation unit that:

i) fetches initial process states for subjects from objects

ii) schedules processes for interpretation

iii) interprets moves for processes

iv) manages information on the computer's tape

(2) a set of subjects (s1,...,sm) and objects (o1,...,on)

and an "access matrix" which specifies a protection configuration:

r in (si,oj) for 0<i<m+1, 0<j<n+1,

w in (si,oj) for 0<i<m+1, 0<j<n+1

(3) a "run sequence" of objects to be interpreted for each subject.

In operation,  the scheduling mechanism selects the subject  whose move is interpreted at 
each  interpretation step.  When and if  a  process halts,  the  next  move for  that  subject  is 
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interpreted from a process initialized by reading the next object in that subject's run list. If  
there exists no such object or if r is not in that object for that subject, the next object in that 
subject's run list is chosen, while if there are no further objects in that subject's run list, no  
process is invoked.

At least three Special State cases exist for the particular computer that we will be considering 
herein,  the "read" state,  the "write"  state,  and the "interpret"  state.  We describe here the 
events for these cases.

Upon entry into the "read"  Special State, the symbol under the tape head must be one of 
{0,1,...m} where the integer corresponds to an object number in the access matrix, or the 
process will halt. If the object number corresponds to an invalid access matrix entry, or the 
S/O  entry  does  not  contain  the  "read"  privilege  for  the  (subject,object)  pair  under 
consideration, the process enters the "read failed" (RF) state. If the integer corresponds to a 
valid  access  matrix  entry  and  the  user  has  the  "read"  privilege  for  that  entry,  then  the 
sequence of tape symbols corresponding to that entry is placed on the tape starting from the 
current  tape  position  with  each  subsequent  symbol  being  placed  on  a  subsequent  tape 
square.  When the "read" operation is completed, the normal next  state of  the process is 
entered, with the tape head over the left most cell of the sequence read in.

Upon entry into the "write" Special State, the symbol under the tape head must be "BO", and 
the symbol directly to its right must be one of {0,1,...m} where the integer corresponds to an 
object number in the access matrix, or the object will halt. If the integer corresponds to a valid 
access matrix entry, and that entry does not contain the "write" privilege for the subject under 
consideration, the object enters the "write failed" (WF) state. If the integer corresponds to a 
valid  access  matrix  entry  and  the  user  has  the  "write"  privilege  for  that  entry,  then  the 
sequence of tape symbols on the tape up until the first "EO" symbol, starting from the current 
tape position with  each subsequent  symbol  being taken from a subsequent  tape square, 
replace  the  stored  object  corresponding  to  that  integer.  When  the  "write"  operation  is 
completed, the normal next state of the process is entered, with the tape head over the left  
most cell of the written sequence.

Each tape sequence stored or retrieved from the object memory must be in the following 
format, or the process may never halt, and the stored sequence will not be effected:

Tape square Tape symbol

----------- -----------

0 "BO" (Beginning of Object)

1 object number

2 1st symbol

... ...

n last symbol

n+1 "EO" (End of Object)

The "interpret"  Special State causes the UPM to begin interpretation of a sequence at the 
current tape square as the D.N of a UPM program. We note that this is not a necessary state 
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in the sense that any program being interpreted could itself interpret the other program by 
simulating a UPM operating on that machine @cite[Turing], but that it is a convenient state in  
that it saves a great deal of difficulty in further examples.

A Simple Virus

We now demonstrate a self replicating object oc which, if interpreted by a subject su with r in 
(su,oc) and w in some (su,oz), can copy its own contents into oz, and thus modify oz to include a 
copy of itself. We note that any object that replicates itself outside of itself is a virus (Lemma 
2.1), and that thus the following object is a virus.

SxI N O D

---------------------------

s0,BO s0' BO 0 ;check for start of object

s0,else s0 else 0 ;or halt

s0',* CPY(BO,EO,EO) ;copy object to after self

s0'' L(BO) ;get to beginning of object

s0''',* s1 BO +1 ;move over object number

s1,x write [x+1]|n -1 ;replace object number

s2,* s1 BO +1 ;loop to next object #

WF,* s1 BO +1 ;even if write failed

If we examine this program, we see that it simply copies itself, changes the object number,  
and writes the next object as a copy of itself with a different object number. We note that  
regardless of the length of the object required to indicate this machine to the UPM interpreting 
it, the write will duplicate the entire sequence, and that for any finite n, this constitutes an SVS 
of size n. If there exists some subject su  with r in (su  ,oc) and w in some (su  ,oz) where z ≤ n, 
then as ou is interpreted, the object oz will come to contain a virus.

Although state s0',  s0'',  and s0'''  help fulfill  the Turing machine definition of a virus given  
earlier,  the  storage  system maintaining  the  objects  of  the  UPM constitute  sequences  of 
symbols that may be subject to interpretation. In order for a sequence to be a virus, it must 
merely cause a (possibly evolved) version of itself to be created outside of itself in the storage 
system. Thus, we have the following simplified version of a virus called "OV" for the computer 
under consideration.

SxI N O D

---------------------------

s0,BO s1 BO +1 ;check for start of object

s0,else s0 else 0 ;or halt

s1,x write [x+1]|n -1 ;change object number and write

s2,BO s1 BO +1 ;loop to next object #
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WF,* s1 BO +1 ;even if write failed

UPM Virus "OV"

Viral Transitivity

We feel compelled here to discuss the "run list" and "scheduling algorithm" which we 
have purposely left  nebulous until  this point.  In order to prove that a protection system is 
"safe",  we generally  wish  to  prove  that  a  particular  set  of  states  or  sequence of  events 
CANNOT occur. We therefor wish to consider the "possibility" of the existence of a sequence 
of events which result in particular effects on the state of the UPM.

Our modeling problem is one of determining which aspects of machine operation should be 
fixed, and which should be allowed to vary. We justify our choice of arbitrary run lists and 
scheduling by explaining that in an actual computer system, the run list  and sequence of 
object interpretation are not in fact determined a-priori, but rather result from the relatively 
unpredictable use of the system by users. In particular, we may rest assured that any specific  
sequence of interpretations of objects by subjects is possible.

As an example of the utility of the choice of arbitrary scheduling and run lists, let us suppose 
that there exist objects o1,o2, and o3 and subjects sa and sb such that:

r in (sa,o1), w in (sa ,o2),

r in (sb,o2), w in (sb ,o3)

From the example above, we know that:

if o1  starts with OV AND

o1  is interpreted by sa at time t

then o2 contains OV at some time t' < t

We also know that:

if o2 starts with OV AND

o2 is interpreted by sb at time t'' > t'

then o3 contains OV at some time t''' < t''

We thus know that:

if o1 is in sa's run list and

if o2 is in sb's run list and

if the scheduler schedules:

o1 for sa at time t and

o2 for sb at time t''

and if o1 completes OV at time t'<t''

then OV spreads transitively from o1 to o3.
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We say that ox can infect oy iff

[∃ a set of run lists [∃ a scheduling of moves

[∃ v ∈ V

[(UPM,V) ∈ VS and

v ⇒UPM V and

[∀ o y at time t [∃ v' ∈ V

[∃ t' ∈ ℕ

[v ⊂ ox at time t and t' > t

and v runs at time t

⇒ v' ⊂ oy at time t']

]]]]]]]

In other words, an object X "can infect" another object Y if and only if there is a set of run lists,  
a scheduling of runs, and some virus v which, if it is in X and is interpreted at time t, causes 
some virus v' to appear in Y at some later time t'. We say that Y is "infectable" by X iff X can  
infect Y. 

We may now easily show that if X can infect Y and Y can infect Z, then X can infect Z. In other  
words infectability is transitive.

We show transitivity by noting that:

if X can infect Y then

there is a sequence of events S1

which causes infection of Y by X

and if Y can infect Z then

there is a sequence of events S2

which causes infection of Z by Y

We now note that if there exist sequences S1 and S2 then there exists a sequence S3 which 
consists  of  S2  appended  to  S1,  which  causes  infection  of  Z  by  X.  Thus  infectability  is 
transitive.

We note also that it is fairly straight forward to show that "sharing" is also transitive, although 
this is not of particular interest to our discussion at this point.

A More Advanced Virus

We now demonstrate a virus that is more advanced in that it is considerably harder to detect 
than the above examples.  In particular,  this virus modifies programs so as to  leave their 
functionality  unchanged.  The  basic  principal  is  to  prepend  a  virus  to  the  program being 
modified so that upon completion of the infection of other programs, the infected program 
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executes  normally.  Thus,  the  final  configuration  of  the  infected  program  should  look 
something like this:

tape square contents

----------- --------

n "BO"

n+1 object number

... virus code

n+k "BO"

n+k+1 object number

... original object

n+m "EO"

The virus is described as follows:

SxI N O D

--------------------------

s0,BO s1 BO 0 ;verify BO

s0,else halt ;or halt

s1,* CPY("BO","EO","EO") ;replicate

s2,* L("BO") ;move left till original program

s3,BO s4 BO +1 ;move to object number

s4,x read [x+1]|n -1 ;read next object

s5,* L("BO") ;get to virus copy BO

s6,BO s7 BO +1 ;move to object number

s7,x write [x+1]|n -1 ;write infected object

s8,* L("BO") ;left till original program

s9,BO interpret BO 0 ;run that program

The reader may verify that this machine generates the arrangement above, and we will not do 
this here. What is most worthy of note here is that the virus is able to infect another program 
and then execute its host as if there were no virus present. This example ignores issues such 
as the access rights to the [x+1]|n numbered object, but is intended only to demonstrate the 
concept,  not  to  be the  ultimate virus.  We note  for  the more rigorous  reader  that  even if 
infection of another program cannot be carried out, this program is a virus since it replicates 
itself on the tape before attempting to effect an object in the subject object memory.

Further extensions of this program would be the inclusion of a detection mechanism that  
would not infect other programs if they were previously infected, a pseudo-random number 
generator  using  the  object  number  as  a  seed  to  overwrite  the  prepended  virus  prior  to 
execution  of  the  infected  program so  that  it  would  be  difficult  to  determine  whether  the 



Page 47

program being executed was infected from within itself, additional evolutionary capabilities, 
more specific targets for infection, detection of the contents of an object to verify that it is the 
D.N of  a TM program rather  than another  type of  data,  the ability  to  infect  data formats 
intended for interpretation by specific TMs (such as language interpreters), and any number 
of other advances.

Model Extensions and Comments

In order to extend the UPM model to networks of computers, we may choose to simply add 
special states which transmit or receive sequences of symbols to or from other UPMs through 
a well defined communications protocol. Access rights to the network are determined by the 
access matrix, and some set of rights to access the network are encoded in access matrix 
entries.

A similar  mechanism  can  be  used  to  embody  functions  commonly  associated  with  an 
operating  system,  by  allowing  special  states  to  act  as  an  inter-process  communications 
method, and granting some special process access to relevant portions of the UPM tape. As 
examples of the power of this mechanism, we can implement the "fork" and "join" operation  
by simply introducing and removing multiple objects into and from the C/P area of the tape, 
we can provide inter-process communications by providing read and write access for each of  
a set of objects used for communication, and we can provide synchronization mechanisms by 
moving sequences in and out of the C/P area in much the same manner as swapping moves  
processes in and out of the main store in many operating systems @cite[Brinch-Hansen].

This special state mechanism is quite general, and the most general manner in which it can 
be used is by allowing some special process full access to the UPM tape. Since the UPM has 
Turing  capability,  and  the  special  states  allow  an  arbitrary  computable  function  to  be 
evaluated with the results left on the UPM tape, any more general mechanism would require a 
machine of greater computing power than a TM.

The problem with this sort of mechanism is that the special process may be too powerful. As 
an example, this mechanism is powerful enough to make the "safety" of the protection system 
undecidable  since it  is  undecidable  whether  or  not  the  special  process modifies  a  given 
access matrix entry @cite[Harrison].  In essence, we must prove properties of the special 
process program in order to be able to prove the safety of the protection system. This is what 
we mean when we speak of a provably secure system @cite[Klein].

In  the  network  analogy,  we  must  prove  that  our  system  is  "secure"  given  some  set  of 
constraints on the rest of the network. If we assume the most general case of the rest of the  
network, we must assume that no real protection is provided outside of our UPM, and we are 
left in a very restrictive case. As we shall see in later sections, the restrictions on UPMs and 
networks containing them may be quite severe, depending on our requirements.

A Secure Network Based on Distributed Domains
Given the extreme openness and communications level of current computer  networks, the 
threat  of  attack  is  severe  @cite[Hoffman].   In  most  current  computer  networks,  sets  of 
heterogeneous  computer  systems are  connected  through  heterogeneous  communications 
networks  using  a wide  variety  of  communications  devices,  protocols,  and  programs  
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@cite[Feinler]   @cite[Bitnet]  @cite[Catchings]  @cite[csnet].   One  fact  that  is  not  widely 
publicized is that these networks are not  intended to be secure in any way @cite[Feinler].  
Both the communications lines and  intermediate  computers  used  for  data  transfer  are  
open  to widespread observation and/or modification.

Legal   protection   is   provided   in  most  states  against unauthorized wire tapping and wire  
fraud, but proof of  the  intruder's guilt  is often difficult, and the damage done may not be 
cured  simply  by  arresting  an  attacker.   The  most   predominant   networks   have   open 
memberships,  allow computer mail and file transfer between nearly any pair of computers 
with arrival times ranging  from  seconds  to  hours after  requests,  and  connect  to  major  
computer  manufacturing and software houses.

Background and Overview

Protection Policies and Models

In  order  to  make  any system secure, we must first consider what  we  mean  by  the  word 
secure.    A  "security   policy"   is    a  formalization   of   the   desired   security   goals. 
Implementation of a policy is usually done with the use  of  a  formal  model  of  desired 
behavior.    This   section   of  the  thesis  examines  a  security  policy  in  which  both  illicit 
dissemination  and  modification  of   information   are  impossible.   The  design  of  secure 
computer systems has been studied by many    authors    @cite[Lampson]    @cite[Feiertag] 
@cite[Harrison] @cite[Fenton]  @cite[Landwehr]  @cite[Denning],  and as we saw earlier, for 
the protection of information from  illicit  disclosure and  modification  in  a  general purpose 
system, a design with both a security  policy  @cite[Bell] @cite[Denning] and an  integrity 
policy @cite[Biba] affords limited protection.

We  will  assume that the security and integrity models reviewed earlier  are the basis for 
protection policies, that both are always in effect, and that they are identically partitioned. This 
combination leads to distributed isolationism, a policy wherein "subjects"  @cite[Harrison] with 
a  given  access  "level"  @cite[Bell]  cannot  communicate with subjects at any other access 
level.   In  essence,  we  are  using  a network to allow spatial distribution of isolated domains, 
so that the functionality  of  many  different  facilities  in  different physical locations may be 
treated as an isolated system.  We use the term "distributed domains" to describe such a 
system.

Where  sufficient,  a (security, integrity) level pair will be referred to simply as a "level".  The 
term  "subject"  in  this  text refers  to  a single "identity" as perceived from the point of view of  
the policy.  In actual implementations, a  person  may  be  identified with  many  subjects, but 
in the formal model, we assume that subjects are  independent  of  each  other.   We   always 
assume   that   all communications  of  concern  to  our  implementation are those that go 
through the computer systems and networks we are designing.   We  will also assume that all  
systems in the network are general purpose.

Implementation Problems

Once a desired policy has been specified, an implementation of it  must  be  used  in  order to  
result  in  a  secure  computer  system  or  network.   In  order   to   guarantee   that   an 
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implementation   correctly  implements   the   policy,   we   must  be  able  to  prove  it 
mathematically. Provably secure operating systems capable of enforcing an isolationist policy 
have been designed and implemented  @cite[Benzel],  but  secure network  design  has  only 
recently  been investigated @cite[Walker]. None of the proposed systems  perfectly  solve 
the  "covert  channel" problem  @cite[Lampson],  although  identification  and measurement 
of covert channels is possible.

The  covert  channel  problem  comes  from  the fact that when subjects share a resource, the  
manner in which one  subject  uses  the resource  may  be  detectable  by  another subject  
with access to that resource.  By examining the statistical behavior of programs which use 
shared resources, it is possible to extract information regardless  of the  degree  of noise in 
this statistic @cite[Shannon].  The bandwidth of covert channels is limited by the amount of  
noise in  the  channel, and  the  quantity of information that can pass through a channel as a 
function of time can be determined and measured.  A related problem is the problem of "traffic  
analysis" in  which  information  is  obtained by  detecting  the patterns of traffic in a network.  
The traffic analysis problem can be addressed in the same  manner  as  the  covert channel  
problem  through  the use of information theory.  We will  not  discuss the covert  channel  
problem further in this work,  although  it is both interesting and important to modern secure 
networks.

Two  basic  types  of  computer  systems can be distinguished, systems based on a trusted 
computing base (TCB) in which operation  is proven  to meet a security policy @cite[Feiertag]  
@cite[Harrison], and systems based on an untrusted computing base (UCB) in which there 
may be   policy,   design,   and/or   implementation   flaws  @cite[Klein] @cite[Linde].   As we 
will see, fundamental limitations must be placed on allowable information flows between these 
systems if there is to be any  hope  of  controlling  the  dissemination  and  modification   of  
information.

Communications Between Computers

Whenever  computers  are connected to form a computer network, there are some physical 
links over which communication  between  these computers  takes place.  Two basic types of 
communication links can be distinguished, links in which communication is physically secured 
from external  intrusion  and  observation,  and  links  in  which  illicit observation  and/or  
modification of data is possible.  In the case of trusted communication links, we assume that  
illicit  modification  or observation    of   information   is   impossible.    With   untrusted 
communication  links,  protection  of  communicated  information  from illicit  dissemination 
requires  that  the information be transformed into a form which will not reveal its content,  
while  protection  from acceptance  of illicit or illicitly modified information requires some form 
of authentication.  These two goals can be  accomplished  through the use of cryptography 
@cite[Branstad] @cite[Needham].

Shannon's   information   theory   @cite[Shannon]   and   work   on  secrecy  systems 
@cite[Shannon2]  form  the  mathematical   foundation   for  most   modern   analysis   of 
cryptosystems,  and  are the basis for the designs of many modern "one key" systems  like  
the  DES  @cite[Davio] @cite[Diffie2].    The   introduction  of  "public  key"  cryptography 
@cite[Diffie]  brought  about  drastic   changes   in   the   research perspective  towards  
cryptography,  with  complexity based protection becoming a prevalent area of mathematical 
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analysis.   In  public  key systems  there are two keys; the "public key" which may be revealed  
to the public and used either for encryption of messages sent to the  key creator  or  for 
public  authentication of messages signed by the key creator; and the "private key"  which  is 
kept  confidential  by  its creator  and  may  be  used either for decrypting incoming messages 
or signing outgoing messages.  It is not necessary that the "public  key" be  revealed to the  
public, and any public key system can be used as a private "two key"  system.   The  RSA 
cryptosystem  @cite[Rivest],  a system  based  on  the  complexity  of  factoring  very  large 
primes  @cite[Williams],  is  the  most  well  known  and  most  studied  of  the  public  key 
cryptosystems,  is  currently  thought  to  be  very  secure  and practical,  and has been  
implemented in several hardware and software systems.

The  existence  of  a  high  quality  cryptosystems  alone, is insufficient to provide for secure  
use of a network; security  depends on  the  proper  use of encryption.  The manner in which 
cryptosystems are used is specified by a "cryptographic protocol".  A  cryptographic protocol 
may  be  thought of as a well specified and systematic means for applying a cryptosystem to 
a specific problem.  In the case  of  a provably  secure network, protocols must be formally  
shown to meet the formal specifications of the security policy.

In conventional one key systems, protocols are fairly straight forward  @cite[Feistel],   but 
functionality  is  quite  limited.  The concept  of  public  key  cryptography  has  led  to  many 
papers  on cryptographic  protocols  for increasing the utility of a cryptosystem @cite[Davies]  
@cite[DeMillo] @cite[Merkle].  Public key based network file servers have  been  investigated 
@cite[Gifford],   and   practical  designs   are   emerging.    Threshold  based  systems 
@cite[Shamir] can be combined with public key systems to allow a  secure  key  distribution 
system  @cite[Chaum3]  even  in  the  presence  of tappers and illicit distributors.  Secure 
key  exchange  protocols  have  been  developed @cite[Merkle]  so  that  two subjects that  
have  never  met  can obtain  a  secure    communications   path    in     an     untrusted 
environment.  Authentication  protocols  for allowing legal document signatures have been 
examined @cite[Rivest] @cite[Merkle],  and  usable  systems  have been  proposed.   Among 
the most advanced current uses of an RSA based cryptographic protocol, is the system used 
for  verification  of  the nuclear test ban treaty @cite[Simmons].

Overview of Results

We  first  examine  networks  in which communication lines are considered trusted paths and 
connections may be made at  any  security and integrity level.  We show that bidirectional  
communication between UCBs  is  only  acceptable  when  they  have  identical  integrity and 
security levels, and that a UCB cannot safely send  information  to  a TCB  unless the UCB is  
at  a  single  security  and  integrity  level.   This  analysis  is  then  expanded  to  untrusted 
communications  networks  where connections  can  only be made at the lowest level.  We 
show that UCBs can only be linked directly to the network at the lowest  integrity level,  while 
TCBs  can be used at all levels with the use of a "good enough" cryptosystem.  These cases 
combine to form  a  set  of  easily applied  design  rules  for the connection of computers to 
form secure computer networks.

Protocols that do not violate security or integrity conditions are  shown, and a "good enough" 
cryptosystem @cite[Rivest] is shown to fulfill   all  of  the  network  security  and  protocol 
requirements. Analysis of attacks based on the compromise of one subject or facility are then 
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shown to  be  potentially  devastating  unless  further  protection  is   provided.    The  use  of 
compartment based protection with each site accessing only a restricted subset of the totality 
of compartments  is shown  to  limit  the potential damage of such attacks, but may not be 
ample protection for many applications. 

Network Communications

The fundamental goal of the network security policy considered here  is  that information not  
be able to move down security levels or up integrity levels.   The  assumption  that  integrity 
and  security levels are aligned implies that information may only move about at its creation 
level.  Unfortunately, in UCBs operating at multiple levels, strict alignment is unenforceable,  
and thus special provisions must be made.  We first consider the formation  of  networks  in 
environments with  trusted  communication paths and derive a set of easily followed design 
rules.

Networks with Secure Communications Paths

In   a  secure  network  with  trusted  communications  paths, communications are allowed 
from place 1 (P1) to place  2  (P2) if  and  only  if the security level of P1  (S1) doesn't exceed 
that of P2 (S2), and the integrity level  of  P2 (I2) doesn't exceed that of P1 (I1).  This is because 
communication from P1 to P2 with S1  > S2 violates the simple security rule @cite[Bell] and 
would allow illicit dissemination of information, and communication from P1   to P2  with  I1<I2 

allows viral  spreading up integrity levels, which allows illicit modification of information.

Connecting UCBs with UCBs

If  we consider that a  UCB is a computer  that cannot  be trusted to  maintain security  or 
integrity levels within itself,  we can regard it  from an external point of view as having the 
security level of  the most secure information processed in it (system high security) and the 
integrity  level  of  the lowest integrity information processed in it (system low integrity):

in a UCB: I=min(I in UCB), S=max(S in UCB)

This  is  a  direct  result  of  the fact  that  any information at  a  high  security  level  could be 
declassified by a UCB,  and  thus  if  we allow output from a UCB at lower than the highest  
level of information processed within it, information could be moved from a higher security 
level   to  a  lower security  level  and thus be illicitly  disseminated.  Similarly,  low integrity 
information within a UCB could be output at a higher integrity level because the UCB cannot  
be trusted  to  maintain integrity  levels.   This  would  allow  a  virus  to spread to higher 
integrity levels and thus allow illicit modification  of  information. We  then obtain the rules for  
safe information flow given in figure 1.2

\      I1=I2      I1 > I2

 +----------------------------+

S1=S2  |    1<--->2 |    1-->2 |

2 Unidirectional communication of information from system "1" to  system  "2"  will  be  written  as  "1-->2"  or 
as  "2<--1",  and bidirectional  communications  between  systems  "1"  and  "2" will be written as "1<-->2".
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 +----------------------------+

S1 >S2 |     2-->1 |    none |

 +----------------------------+

   Figure 1 - Safe Information Flow Rules

By  using  a  simple  set  of  examples,  we can display these equations in terms of pictures. 
In  order  to  determine  whether  a connection can be made, a designer can then use these 
pictures to make decisions  rather  than having to solve equations.   Figure 2 shows the  
equations from figure 1 in pictorial form.  The 4 parts of figure 2 represent the four cases from 
figure 1.  Each system is represented by a set of connected boxes and is labeled by the 
number  of  the  system  as  used  in  the  equations.   The  "high",  "medium",  and   "low" 
designations indicate  different  levels  in  the  system,  and  the arrows between systems 
show permissible connections and the  allowable  direction  of information  flow.  An 'X' is 
used in the case where no communications between the systems is permitted.  Notice that 
communication links are never allowed  to  cross  level  boundaries,  and  that  bidirectional  
communication  is  only possible when S1=S2 and I1 =I2.3

S@-<1>=S@-<2>, I@-<1>=I@-<2> S@-<1>=S@-<2>,  I@-
<1>>I@-<2>

------------ ------------

+-+ +-+ +-+ +-+

high | |<--->| | | |---->| |

+-+ +-+ +-+ +-+

medium |1|<--->|2| |1|---->|2|

+-+ +-+ +-+ +-+

low | |<--->| | | |

+-+ +-+ +-+

S@-<1>>S@-<2>, I@-<1>=I@-<2> S@-<1>>S@-<2>,  I@-
<1>>I@-<2>

------------ ------------

+-+ +-+

high | | | |

+-+ +-+ +-+ +-+

medium |2|---->|1| |2|  X |1|

+-+ +-+ +-+ +-+

low | |---->| | | |

3 In  fact,  with  UCBs  communication  links  can   cross   level boundaries  so  long  as  all  levels with 
communication exist in both systems because the UCB cannot be trusted  to  maintain  these  levels anyway.



Page 53

+-+ +-+ +-+

Figure 2 - Safe Communications Paths Between UCBs

Since  the  equations  in  figure  1  follow the rules that no information can ever flow from a  
higher  security  level  to  a  lower security  level  or from a lower integrity level to a higher 
integrity level, and since the <, >, and = relationships used in these equations are transitive 
(e.g.  A<B and B<C => A<C),  these  security  relations hold  over  the  transitive  closure of 
information flow.  We conclude that any network of UCBs in which the rules from figure 1 are  
followed locally  for  each connection  between computers,  will  globally  meet   the  network 
security and integrity requirements.  In other words, if every connection  looks like the pictures 
in figure 2, the network will meet the security requirements as  stated.   This  "cookbook" 
approach  to designing  secure  computer  networks  made  up  of  UCBs  with secure 
communications links will now be extended to networks with mixed  UCBs and TCBs and 
networks with untrusted communications links.

Connecting UCBs with TCBs

In  a  network containing both UCBs and TCBs, we must consider that although a TCB can be 
trusted  to  maintain  both  security  and integrity  levels,  a  UCB  can  be trusted to do 
neither.  Consider a network consisting of a single TCB (1) and  a  single  UCB  (2),  both  
operating  at  two  levels  (high  and  low).  Since the UCB cannot be trusted to maintain these  
levels, we must consider it externally as  a computer with:

S2=max(high,low)=high

and I2 =min(high,low)=low.

Under  the  Bell-LaPadula  model  (B-L),  we  conclude that no information can flow from the 
UCB to the TCB  at  any  security  level below S2 (high) without violating the *-property and 
thus allowing illicit  dissemination  of  information.   Under  the  Biba  model, we conclude that  
no information can flow from the UCB to the TCB  at  any integrity   level   above  I2  (low) 
without  allowing  illicit modification of information.  We conclude that the only  communication 
that  can  be allowed is unidirectional from the TCB to the UCB.  This derivation is shown 
graphically in figure 3 below,  and  is  trivially extended to systems with an arbitrary number of 
levels.

    B-L    Biba    Both

TCB UCB TCB UCB TCB UCB

+-+ +-+ +-+ +-+ +-+ +-+

high | |<--->| | | |---->| | | |---->| |

+-+ +-+ and +-+ +-+  = +-+ +-+

low | |---->| | | |<--->| | | |---->| |

+-+ +-+ +-+ +-+ +-+ +-+

Figure 3 - Combining B-L and Biba Between a TCB and a UCB

The  unidirectional  communication problem seems to imply that reliable  communication  is 
impossible  without  leaking  information through  a  covert  channel formed by the UCBs 
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responses to protocols. This is easily seen in the case where a subject in a UCB sends  a  bit 
to  a  subject  in a TCB by; filling the UCB's disk so that a transfer cannot be successfully 
completed from TCB to UCB to indicate a 0;  and freeing  up  this  space  so  that  a  transfer  
from TCB to UCB can be successfully completed to indicate a 1.  As an alternative to allowing 
this channel, it may be possible to design a portion of the TCB with limited  functionality  such 
that  transfer  protocols  can  be  done reliably without end to end confirmation.  This  limited 
confirmation with  the TCB will not reliably indicate the success or failure of the transmission 
to the transmitting subject, but it is secure  from  this covert channel, while allowing reliable 
communication after an unknown delay.

The   only   case   where   a  UCB  and  TCB  can  communicate bidirectionally is the case 
where the UCB operates at a  single  level equal to that of the communicating TCB level.  This 
type of connection doesn't violate security or integrity because SUCB=IUCB=STCB=ITCB. Finally, we 
assert that two TCBs can communicate bidirectionally over a trusted communications link  at 
any  level  at  which  both  exist,  since they can both be trusted to maintain security and  
integrity  constraints  on all   information. The acceptable  communications  links  between 
UCBs  and TCBs and between pairs of TCBs are shown in figure 4.

TCB UCB TCB TCB TCB UCB

+-+ +-+ +-+ +-+ +-+

high | | | |<--->| | | |---->| |

+-+ +-+ +-+ +-+ +-+ +-+

medium | |<--->| | | |<--->| | | |---->| |

+-+ +-+ +-+ +-+ +-+ +-+

low | | | |<--->| |

+-+ +-+ +-+

Figure 4 - Communications between TCBs and UCBs

As  with  UCBs, the relations of security and integrity models hold over the transitive closure 
of information flow and thus networks can safely be formed using the rules for connections 
shown  in  figure 4.  With the above results, we can straight forwardly connect UCBs and 
TCBs   into   trusted  computer  networks  in  any  environment  where communication links  
between  systems  are  trusted,  without  fear  of either  security  or  integrity  violations,  so 
long  as  each system maintains its specified properties.  An example of such a  network  is 
shown  in  figure  5.  Verification that it meets the above connection criteria can easily be done 
by observing that only connections of  the forms  shown  in  figure 4 are used.  This network  
therefore meets the security requirements specified by the policy under consideration  for 
trusted communication environments.

UCB TCB TCB UCB TCB

+-+ +-+ +-+ +-+ +-+

high | |<----| | | |<--->| |<--->| |
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+-+ +-+ +-+ +-+ +-+

medium | | | |<--->| |<----------->| |

+-+ +-+ +-+ +-+

low | |<------------| |<----------->| |

+-+ +-+ +-+

Figure 5 - An Example of a Secure Network with Trusted Communications

Networks with Untrusted Communications Paths

In  spatially  distributed  networks  or  networks  operating  within  untrusted   environments, 
untrusted communications paths must be used. In general, an untrusted communications path 
can not be relied upon to either maintain the secrecy of information flowing through it,  or  to  
prevent   an  attacker   from introducing false information to  it.   Both authentication  and 
secrecy   are   clearly   required   if   secure communication is to take place.

Network Level Communications

In   an  untrusted communication  path,  we must  consider  all  data  as  being  at  the  lowest 
integrity  level  since  it  could  have  been manufactured  or  modified  by an attacker, and at  
the lowest security level since a tapper could observe information in transit.  Thus:

Snetwork=min(security-levels) and Inetwork=min(integrity-levels)

From the previous analysis, UCBs may output to a network iff

SUCB ≤ Snetwork,

and it may input information from a network iff

IUCB ≤ Inetwork.

Since

Snetwork=min(security-levels) and Inetwork=min(integrity-levels),

bidirectional communication requires that

SUCB=Snetwork and IUCB=Inetwork.

while reception of information from a network by a UCB requires only that

IUCB=Inetwork .

Since TCBs enforce levels, communication with levels in TCBs where

STCB=Snetwork and  ITCB=Inetwork

is  safe.  Thus we can connect any TCB with a level at Snetwork to an insecure network, without 
violating the system or network  security and  integrity  policies.  These cases are shown 
pictorially in figure 6, and as  before  the  results  extend  transitively  so  that  these pictures 
can be used to design a secure computer network.

UCB UCB UCB TCB TCB
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+-+ +-+ +-+ +-+

| | | | | | | |

+-+ +-+ +-+ +-+ +-+

net->| | net<->| | net  X net<--->| | net  X

+-+ +-+ +-+

Figure 6 - Safe Connections with Untrusted Networks

High Level Communications

The  problem  remaining  is that only data at Snetwork and Inetwork can be placed on the network, 
and  it  may  be  desirable   to  communicate   higher  level  information.   If  typical  network  
performance levels are desired, a means of automatically reducing  and  increasing the level  
of information at a reasonable speed on a demand basis seems necessary.    This  can  be 
provided  if  we  have  a  "good  enough" cryptographic function "E" with built in authentication 
such that:

SE(data)= Snetwork and IE(data)= Inetwork

and a "good enough" inverse function "D" such that:

SD(E(data))=Sdata and ID(E(data))=Idata.

Assuming   that   an  appropriate  cryptographic  function  is available, we can communicate  
any desired information over the network by transforming it to the network level.  Since all  
information in the network  is  at  the  same  level,   the  network  meets   the   policy 
requirement.   Since  all  computers in the network communicate at the same  level,  there  is 
no  covert  channel  due   to   bidirectional communication  protocols  between  processes  at  
different levels.  A simple example of this type of system is shown in figure 7 where "E/D" is  
used  to  indicate  an  encryption/decryption  link  which  allows information  at  one  level  to  
be  sent  to  another  level  through appropriate encryption or decryption.

+-+

3 | |<-E/D-------+

+-+            |

2 | |<-E/D----+  |

+-+         |  |

1 | |<-E/D-+  |  |

+-+      |  |  |

| |<-----+  |  |

network<------->| |<--------+  |

| |<-----------+

+-+

Figure 7 - Simple Encryption/Decryption for Changing Levels



Page 57

As before, transitivity of the "=" relation allows any desired connectivity  between computers 
at the network level without violating policy requirements.  We also note that the addition of 
UCBs  to  the network  under  the  previous  rules  has  no  detrimental  effect and maintains 
the transitivity property because the  only  UCBs  that  can pass  information  out are single 
level UCBs at the network level, and single level UCBs connected to appropriate TCB levels, 
and  thus  the rules given in figure 6 still apply.

End  to end protocols can be implemented for data sent between identical levels since there 
is a means of transforming  the  data  to and  from  the  network  level.   Since encryption and  
decryption guarantees that no communication is permitted between nonidentical TCB levels,  
this is sufficient to  assure  maintenance  of  these  levels. Note  that the encryption and 
authentication functions E and D must be built into the TCB so that it can be proven that there  
is no  possible manner  in  which  levels  can  communicate  except through the proper  
transformation of information.  Also note that  there  may  be  covert channels  available 
through the use of  traffic  analysis unless further precautions are taken.   This  will  not  be  
discussed further here.

A final  problem that  must  be addressed in an untrusted network involves communication 
between computers where there is no direct path at  the network level.  This is illustrated in 
figure 8 in the case of communication from A to B.

TCB TCB TCB TCB

 X  Y  Z  W

+-+  3 +-+

S | |---->| |

+-+ +-+ +-+

C |A| | | |B|

+-+ +-+  2 +-+ +-+

U | | | |---->| |

+-+  1 +-+ +-+

N | |---->| |

+-+ +-+

Figure 8 - An End to End Multihop Communications Problem

Since  data at A cannot be sent to TCB-Y except at level N, it  must be transformed into 
E(data) for transmission.  Once inside TCB-Y, it cannot be decrypted into D(E(data)) since this 
would leave the data at level U, a violation of the security condition.  It also cannot  be kept  in  
the E(data) form since this is at too low an integrity level for transmission over 2.  If decryption  
in the cryptosystem used were as secure as encryption, we could decrypt the information to 
level U with the hope of later encrypting back to level N and then decrypting  back to  level  C. 
Unfortunately, there is no other place in this network where such a transition can be made.  
Sending the  data  over  link  3 presents  the  same  sort  of  problem  because  the integrity  
must be increased to level S in TCB-Z in order for it to be sent over  3,  and then  decreased  
to  C  in  order  to  reach  B.   We are faced with a potential problem which we call the "level  



Page 58

shifting" problem.

A Proposed Network Protocol

There  are  several  potential solutions to the level shifting problem seen in figure 8.  The 
simplest  and   perhaps   most   reasonable  technique   is   to   require  that  each  level  of 
declassification require independent encryption and authentication,  and  that  each  level  of  
reclassification   require   independent   decryption  and  authentication.  In  other  words,  we 
require a cryptosystem and communications  protocol where:

SE(data)=Sdata-1, IE(data)=Idata-1,

SD(data)=Sdata+1, and ID(data)=Idata+1.

This type of system is shown in figure 9.

+-+

3 | |<-----+

+-+      |E/D

| |<-----+

2 | |

| |<-----+

+-+      |E/D

| |<-----+

1 | |

| |<-----+

+-+      |E/D

network<------->| |<-----+

+-+

Figure 9 - Stepwise Encryption for Level Shifting

With the technique in figure 9, the problem in figure 8 is  easily  solved.   Data  is  encrypted  
twice in moving from A to 1, decrypted once for transmission over 2, decrypted twice more for 
transmission  over  3,  and  encrypted one last time to reach B.  A similar path  is  required  in  
the  reverse  order  for transmission from B to A.  This stepwise encryption solution of figure 8 
is shown in figure 10, where E and D label each information path by its function.

@begin(verbatim)

TCB TCB TCB TCB

 X  Y  Z  W

+-+  +-+

S       +-| |---->| |-+
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+-+       D +-+ +-+ E

C |A|-+       +-| |-+ |B|-+

+-+ E +-+  +-+ D +-+

U     +-| |-+ | |-+-->| |-+

      E +-+  +-+ D +-+

N     +-| |---->| |-+

+-+ +-+

Figure 10 - An End to End Multihop Communications Solution

@end(verbatim)

This  protocol  has cases where information has been decrypted more times than it has been 
encrypted, and allows plaintext to be found in intermediate network locations.  This is not a  
violation  of the security or  integrity policy because it is at the same level as the source data. 
The protocol requires the  use  of  a  cryptographic  algorithm  in  which encryption  inverts  
decryption and decryption is as cryptographically strong as encryption.  In other words,

E(D(data))=data and

D(data) is "good enough".

If  end  to end security is also desired, the initial data can be encrypted with a key known only 
to A and  B  so  that  intermediate places  in  the network at the same level as A and B cannot 
access the plaintext of the message.  Alternatively, intermediate places  in  the network  can 
use limited functionality to pass information on without allowing it to be read even though it is  
in the plaintext form, as was noted earlier in our discussion.  Limited functionality  can  only 
be assured  in  TCBs,   and  end to  end encryption is  still  a good idea in  cases where 
intermediate nodes may be taken over.  This is examined in a later section, and will not be 
discussed further here.

This  multiple  encryption  scheme  has a potential benefit in that the more encryptions are  
performed, the more sure we might be  of the  security and integrity of the information.  In  
some cryptosystems this is not necessarily the case.  As an example, the DES cryptosystem 
has several keys that are self inverting or have  an  inverting  dual, and  even  has  at  least  
one  key that doesn't transform data at all @cite[Davio].  This may not be bad since  even  the 
provably  perfect "one  time  pad"  @cite[Shannon2]  has  such  keys  (with  probability 1/2@+
(n) for an n bit message), but it's not  encouraging  either.   A possibly  desirable  property of  
the cryptosystem for this application is that double encryption not reveal the data:

E(E(data)) ≠ data,

and more generally, that n-ary encryption for n>0 not reveal the data:

En(data) ≠ data.

In conjunction with the previous equations, this implies also that

Dn(data) ≠ data,

and in general can only be fulfilled in a cryptosystem in which
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n ≤ number of unique ciphertext blocks

since  there  can  only  be  n unique representations when there are n unique ciphertext  
blocks.   As  a  practical  matter,  the  number  of embedded  encryptions  required  is unlikely 
to  exceed  232 for  any  contemporary  or  projected  system,  and  the  cryptosystem  we  will 
examine (the  RSA  @cite[Rivest])  can  have  sufficient  numbers  of unique ciphertext blocks 
(≥ 2500 for a typical implementation) so that this is not a problem.

A "Good Enough" Cryptosystem

The  major  deficit  of  the  stepwise  encryption  scheme  is  that  it  takes   time   for   each 
cryptographic operation and may have severe key distribution and maintenance problems in 
some  implementations.   The major  advantage  is that it offers extremely good security even 
under  fairly  severe  fault  assumptions  if  a  "good  enough"  cryptosystem  can  be  found. 
Fortunately, there is at  least  one  cryptosystem  that  fits enough of the requirements to  
make it usable in such a network.

Feasibility of the RSA

The  RSA  cryptosystem  @cite[Rivest]  encrypts  and  decrypts information by exponentiation 
in a modulus "M".  Although there is  no proof  yet that it is, in general, difficult to determine 
plaintext from ciphertext, it is proven that determining either  the  enciphering  or deciphering 
key from the other is as hard as factoring the product of two very large prime numbers.  Even 
with  (plaintext,  ciphertext)  pairs  available  to  the  cryptanalyst,  determining   keys  is   this 
difficult.  Factoring   primes   has  been  studied  for  a  very  long  time  by  many  famous 
mathematicians, and no polynomial time algorithm has ever  been  found for  it.   This  does  
not rule out the possibility that a fast enough factoring algorithm might be found in the future. 
The time taken  for breaking  the  RSA  system  can  be  made  arbitrarily  long  by using  
appropriately long keys.  The use of longer keys  doesn't  change  any aspect  of  protocols 
or  other procedures except that it reduces the performance  of  the  algorithms.   Without 
going  into  mathematical details,  we will outline the reasons that the RSA system meets all of 
the requirements for a "good enough" cryptosystem stated earlier.

Encryption  and  decryption  under RSA are identical except in that they use different keys. 
The choice of which key is private  and which is public is entirely arbitrary, and as such the 
RSA constitutes a  "double"  public  key  cryptosystem.   Thus,  if  the  RSA is "good enough", 
and every message is both encrypted with  a  public  key  and authenticated with a private 
key, then

SE(data) = Sdata-1, IE(data) = Idata-1,

SD(data) = Sdata+1, and ID(data) =Idata+1

and if E(data) is "good enough", then D(data) is "good enough".

Because  the  product  of  the  2  keys  used  in  RSA must be congruent to 1 in the modulus  
M in order to produce the plaintext from the ciphertext by double exponentiation, and since 
both must  also  be prime  with respect to M, repeated exponentiation with either key must  
produce  M-1  unique  elements  of  the  ciphertext  space  before  repetition.  This  has  been 
exploited  in   the   generation   of   pseudorandom   numbers  @cite[Chaum2]   through 
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repetitious exponentiation of an initial seed, but more importantly it shows that as long as 
n<(M-1),

En(data) ≠ data and Dn(data) ≠ data.

Since  all  of  the protocols based on public key systems will work with any "good enough"  
public key system,  and  since  RSA  is  a public  key  system, it can be used to implement  
any of the public key protocols.  We conclude that RSA is "good  enough"  for  the  security 
requirements  of  a network if it is secure enough for the application under consideration.

Some Simple Network Protocols

There are also other  advantages of public  key systems that  can be  exploited in secure 
networks.  A public key system requires only n key pairs for secure communications between 
n subjects (as opposed  to n2  keys  for private key systems).  This offers significant space 
savings over private key systems.  Key pairs can easily  be  generated locally  for  spatial 
distribution  of  security.  This  limits  the effectiveness of local attacks, and  allows  individuals  
to  generate their  own  keys.  Limited  functionality  systems  that  can  not be infected or 
broken into without physical attack can be used for  local key  generation.   In  addition, the 
RSA can be used as a key distribution system for  distributing  keys  of  other  cryptosystems 
with  higher bandwidth or other advantages.

In  order  to  obtain  an end to end secure encryption channel between any two subjects (A 
and B) in  a  network  where  no  previous secure channel existed, protocol 1 may be used:

SubjectA SubjectB

create an RSA key pair (E1,D1)

send E1 key to B

create an RSA key pair (E2,D2)

encrypt E2 with E1 ⇒ C1

send C1 to A

decrypt C1 with D1 ⇒ E2

create an RSA key pair (E3,D3)

encrypt E3 with E2 ⇒ C2

send C2 to B

decrypt C2 with D2 ⇒ E3

Protocol 1 - Secure Key Exchange in an Open Channel

After  this  exchange, only A and B can know E2 because it was encoded with the public key  
to which only A has the  private  key. Similarly,  only  A  and B can know E3 because it was 
encoded with key E2 to which only B has the private key.  Therefore,  no  other subject  can 
forge either A or B and no other subject can observe the plaintext data being sent between 
them.  Thus we have both secrecy and authentication in both directions.   The  only  problem 
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is  that  the actual  identities of A and B were never verified to each other.  This problem may 
be solved with a sufficient authentication procedure,  and will not be discussed further here.

This  protocol  needn't  be  used  exclusively  for end to end encryption, as it can be just as 
effective  for  exchanging  keys  of intermediate  store  and  forward  stations  in  the network  
without a centralized secure key distribution system.  Indeed, the same  concept can  be 
used  for introducing new sites and subjects into the system. Since each subject only needs 
to maintain the keys of the end  to  end subjects  with  which communication is desired, the  
space required for keys can be kept quite low.  If a new subject is  to  be  communicated with,  
the  public  key  of  that  subject  can  be exchanged with all communicating subjects' public 
keys with only an addition of  one  key per  subject.   The  number of keys maintained by each 
subject is thus linear in the number of subjects being communicated with.

The  only  problems  with the RSA cryptosystem in this context are that it operates at a fairly  
low bandwidth (under 2000  bits/sec), and  after  a  "long  enough"  time, any given key can  
be broken.   The bandwidth  problem is  a  fundamental  limitation  of  the  algorithm used  to 
encipher and decipher information, and currently can only be  improved upon through the 
parallel  ciphering and deciphering of multiple blocks of   data,  and  improved  hardware 
technologies.   This  has  limited application in centralized facilities, but is less likely to be 
useful for individual users.  A realistic design could be  implemented  in  a hand  held device  
with 10 RSA chips that would allow communications at an effective baud rate of 20Kbaud 
with  a  .2  second  delay  between transmission  and  reception.  Technological changes 
predicted for the next 10 years would allow such a system  to  be  implemented  using  a 
single  chip  with  a  delay  time  under  .01  seconds,  and 20K baud bandwidth.  This would  
seem adequate for a  hand  held  or  wristwatch mounted single user device.

The  "eventual"  breaking of the RSA appears to pose little or no threat to its practicality.  The 
number of bits of key used for the RSA can be increased for a longer attack time, so if more 
security  is desired,  it  can  be  attained  at  the cost of performance.  Current estimates for  
attacking a 200 digit key using the best known algorithm on a special purpose computer are 
that, for the next 10  years,  there will  be  no  algorithm  that  will  break  a  200  digit RSA in 
under 10100 years @cite[Chaum2].  10100 years is  much  longer  than the   expected  lifetime 
of  the  Universe,  and  appears  to  be  an insignificant threat.  In addition,  new  keys  can  
be  generated  at frequent  intervals to limit the damage of breaking a given key.  With the use  
of a truly random number generator in each  hand  held  device @cite[Chaum2], a practically 
unbreakable key could be generated from a truly random seed as often as once every few 
minutes.

Fault Tolerant Network Security

The  analysis  to  this point has been based on the assumption that every TCB within  a  
secure  network  is  perfectly  trustworthy. Severe  problems  may arise when this assumption 
is dropped, and there is considerable reason to  believe  that  this  assumption  is  not  a 
reasonable one.  As an example, if a single user were not trustworthy, if  a  single  site  in  the 
network  were  secretly taken over by an attacker, or if a combination of errors or hardware 
failures  were  to occur,  the security of the entire network might be compromised unless we 
considered  the  possibilities  in  our  design.   We  examine  the ramifications of such failures 
on the class of networks derived above, and  explore  techniques  which  could increase the 
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fault tolerance of such a network and further secure it from attacks.

Fault Models

Our  analysis  of  failures  in  a trusted computer network is based on two fault models.  The  
first fault model  assumes  that  some user  in  the  network  decides to launch an attack 
against the entire network and do as much damage as possible.  A well placed  traitor  or  
terrorist  might  launch such an attack as might  a disgruntled employee. We  will  see that 
without  further  restrictions  on  the  network,  such  an  attacker  might  cause  fairly  severe 
damage.  This fault model  will   be called  the "Lone Ranger Attack" (LR) throughout the  
remainder of this paper.

The  second  fault   model  considers the complete takeover  of  a computer or site in the  
network.  We will use  the  word  "node"  from this  point  forward to designate a taken over  
portion of the network. This is a fairly severe type of fault  since it  allows all   information 
including locally stored keys to cryptosystems to be attained and used by  the attacker without 
the knowledge of the rest of the network.  It is assumed that all access codes and access 
rights  in  the  node  are granted  to the attacker, and that any activity that would normally be  
allowed in the node is allowed to the attacker.  Examples  of  such  a scenario  are the case  
where a systems administrator at a site becomes untrusted or a successful  physical  attack 
is  carried  out  without detection.   This  attack will be called the "Massive Takeover Attack"  
(MT) throughout the remainder of this paper.

Since   we  don't  know  enough  about  the  topology  of  the particular network under 
consideration or the types  of  computers  or protocols  to  be  used  in a particular case, we 
will assume that the network  is  designed  to  prevent  such  a  failure  from  dominating 
communications.  We will ignore all issues unrelated to the effects of the  security  model 
under consideration.  We will also assume that in the MT attack,  the  node  may  introduce 
false  messages,  intercept messages  passing  through it, and allow information to cross 
security and integrity boundaries.

The LR Attack

In  the LR attack, we consider the case where a single user at a given level launches a viral 
attack.  Since a virus is,  in  general,  able  to  reach  the  transitive  closure  of information  
flow,  it  could  in theory spread throughout the network starting at its initial subject and infect 
all other subjects  at  the same  level.   This  attack  could  eventually cause severe damage 
and widespread denial of  services.   This  assumes  that  the  transitive closure of information 
flow encompasses the vast majority of the other subjects in the network at the same level,  
and that no other isolation is in effect.

In  the  case  of a UCB, we can see from the previous analysis that only a "one level" system 
is able to communicate  information  to the  network.   Thus,  a  multilevel  UCB cannot be 
used to infect the network.  In the case of an attack launched from a  TCB  or  a  single level  
UCB, information is allowed to flow to any other subject at the same level, and thus  the 
attacker  may  launch  a  widespread  viral attack.   In practice, users are often granted 
access as more than one subject.  In this case, a single user may  be  able  to  launch  viral 
attacks  at  many or all levels and place a significant portion of the network under attack.
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We  know  from  our previous analysis that in order to further limit viral attack, we must either  
reduce  functionality  by  limiting the  interpretation  of  information, or further limit the sharing 
and transitivity of information flow.  This applies  to  networks  in  the same way as it applies 
to a single system.  Additional partitioning of the network into "compartments" can limit the 
sharing and transitivity of  information  flow  and  thus  limit the subset of the network that  
could become infected in an LR attack.

Unfortunately,  many  systems  currently  implementing  compartment  based  protection  allow 
information flow across boundaries for subjects with  access  to  multiple compartments.  
From  the  standpoint  of  viral  attack,  this  is  ill  advised  since  a  virus  could  then  cross 
compartment boundaries and spread to all subjects within the level  at  which  the attack was 
launched regardless of its initial compartment.  A rational solution  is  to  enforce compartment 
boundaries to the same extent  as levels are enforced, and thus limit  a viral  attack to  all  
subjects  in the  same  compartment,  security  level,  and  integrity level as the attacker.  We  
find that this solution is  unacceptable  within  a  UCB since  a  UCB  can't  be  relied  on  to  
protect compartments from one another, and we must further limit single level UCBs to one 
compartment if  we  are to accept outgoing communications from them.

In  the  same  way  as  security and integrity levels became a problem in the transmission of  
data through intermediate computers  in a  network,  the  use  of  compartments presents a 
problem.  Since the information allowed in an intermediate site cannot be in a compartment 
not  permitted within that  site,  communications may be restricted  from passing   through 
intermediate  nodes  unless  all  nodes  have  all compartments.   This  also   defeats   the  
protection   offered   by compartments against MT attack soon to be explored.

Without   extensive  analysis,   we  can  see  that   the  use of  cryptography for  moving  
information between compartments  works  just  as in  moving information  between security 
levels.  The use of a special network compartment "N"  allows  us  to  transmit  information 
through  intermediate sites by giving all sites access to N.  In order to avoid wide spread 
infection of N, we limit N's functionality to the built in functions required for implementing the 
transport  mechanism of  the  network.   If  we  can  prove that this limited functionality doesn't  
permit viruses, then we may have  an  acceptable  solution  to this communication problem.

The MT Attack

In  the  MT attack, the security of the node is violated.  All information in and capabilities of the 
node are then available  to   the attacker.   With  no compartment  protection,  infection can 
spread to any other  place  in  the network at any  level present within the node.  If the node 
has access to all levels, then the  entire network  can  be  infected,  and all information in the  
network can be extracted.  This is certainly a severe attack, and  is  equivalent  to having  a 
set  of  LR attackers in each of the levels in the node.

Using  the same analysis as was used for the LR attack, we see that  with   compartment 
protection,   all   (security,   integrity, compartment)  triples within the node can be taken over. 
Consider  the  MT attack's  ramifications  in  terms of  revealing  keys to  cryptosystems.  The 
advantage of a public key system becomes quite apparent, since the node would only be able 
to access public keys of other  sites.   In  a one  key  system  like  the DES, such an attack  
allows the attacker to forge messages of other sites unless n2 keys are used for  an  "n" 
subject  network.   Security  in  the private key case requires severe overhead, especially  
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when there are large numbers of subjects  in  the network.

Analysis of an Example Network

Figure  11  shows  an example of a network operating with only level  and  compartment 
protection  with   many   important   network properties.   The  rows in this diagram indicate 
levels in the system, while the letters in each column represent the allowable compartments. 
The compartment 'N' is the "network" compartment realized through  a TCB. Information can 
only be passed between levels through 'N', and a mandatory encryption and authentication is 
performed by the TCB.  We may also  allow a  limited functionality computer mail system 
between  'N'  compartments  and  grant  every  subject  an  account  in  an  appropriate   'N'  
compartment for  sending  and  receiving  mail.   For notational purposes, we will describe 
places  in  this  network  as   triples   consisting   of   the   (TCB  number,  level  number, 
compartment).  Thus, (1,3,a) exists, but (1,3,c) does not.

@begin(verbatim)

 TCB1  TCB2   TCB3

+-++-+   X +-++-+ +-++-++-+

3 |N||a|<-------->|N||a| |N||b||c|

+-++-+   Y +-++-+ +-++-++-+

2 |N||b|<-------->|N||c| |N||b||a|

+-++-+ +-++-+ +-++-++-+    Z

1 +---->|N||a| |N||b| |N||c||a|<------+

  | +-++-+ +-++-+ +-++-++-+ |

  +-----------------------------------------------------+

Figure 11 - A Sample TCB Network

@end(verbatim)

Communication Restrictions

All connections in this network meet the requirements of our cookbook designs for connection 
of TCBs. Since communication links are at a variety of levels,  there must be a variety of 
security  measures  taken  to  assure  that  links  above  the  network  level  (1)  are  physically 
secured and only allowed to operate in trusted environments. Link X and Y are above the 
network level,  and must be independently secured from the environment and each other. 
Thus we must require that TCB1 and TCB2 are in a site with trusted communication links. 
TCB3 can be in a remote site since its only connection is at the network level.

We shall use the term "channel" to indicate a logical communications link between two places 
in the network. Since no communications are allowed between subjects in different levels or 
compartments, the only channels required are:

channel  from  to

--------------------------
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1 (1,3,a)<-->(2,3,a)

2 (1,2,b)<-->(3,2,b)

3 (1,1,a)<-->(3,1,a)

We will  use a fixed slot routing technique with channels assigned to links in the following 
manner:

channel 1 uses 100% of X's time and 100% of Y's time.

channel 2 uses 50% of Z's time.

channel 3 uses 50% of Z's time.

In  general,  the  channel  assignment  problem for  optimizing  communications  relative  to  a 
performance measure in this type of system is NP-complete, and has very strong analogies to 
the routing problems encountered in the design of digital integrated circuits.

Communication Protocols

We will initiate each channel with a channel wide key exchange as specified in protocol 1 
every hour. Both encryption and authentication of all  messages over each channel will  be 
required for each transmission. In order to prove identity of end to end subjects, each TCB will  
provide  independent  verification  of  identities  of  all  senders  on  each  transmission,  and 
legitimate communication partners will be given to each TCB so that illicit attempts at initiating 
protocols may be detected.

Information  will  be  transmitted  as  a  continuous  stream  of  bits  at  the  link's  optimal 
communication  rate,  with  a  synchronization  signal  sent  once  every  minute  to  maintain 
network wide timing and synchronization. When higher communications bandwidth than can 
be provided with RSA is desired, systems will be able to agree via messages sent subsequent 
to protocol 1 to use a DES encryption system for the duration of the period of communication.  
The external appearance of the protocol will not change when the DES is in use as this could 
lead to a covert channel. DES keys will be exchanged using the current RSA keys, and will be 
randomly generated by the TCBs as part of their system services.

Fault Tolerance Under Attacks

The only network LR attacks are by subjects with channels to other network sites. Each of  
these  can  only  attack  1/6  of  the  places  in  the  network.  With  the  exception  of  restricted 
computer mail facilities, no communication is permitted from any subject to more than 1/6 of  
the other subjects in the network. This network also provides limited protection from the MT 
attack in that TCB1 can only effect subjects in compartment 'a' at levels 1 and 3, and subjects 
in compartment 'b' at level 2, which is only 1/2 of the network. By similar analysis, TCB2 can 
only effect 1/3 of the network, and TCB3 can only effect 2/3 of the network. Note that the only 
untrusted communications line allowable in this system is the one from TCB1 to TCB3 since 
all others are at higher levels than the "network-level".

We finally note that in a network with a large number of UCBs and a small number of TCBs, 
we can attain distributed isolationism by using the TCBs as "hubs" for UCBs within a given  
facility, and routing all interfacility communications through these hubs. Limited functionality  
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TCB hubs may be practical to this end.

Summary

The basic design criterion for a secure multilevel computer network have been examined, and 
a set of proven connectivity constraints have been developed that allow the systematic "cook 
book" design of secure computer networks in both trusted and untrusted communications 
environments. Untrusted computing bases have been shown to be of very limited utility in 
these systems, while trusted computing bases have been shown to be sufficient  to  allow 
useful communications.

Automatic  declassification  and  reclassification  of  information  in  such  a  network  was 
examined, and the desired properties of a cryptosystem for this purpose are now specified. A 
"good enough" cryptosystem has been shown to be available in the form of the RSA "public  
key" cryptosystem, and protocols are available for its proper use in such a computer network.

Attacks against secure computer networks of the sort specified here have been examined, 
and  their  effectiveness  has  been  shown  to  be  drastically  reduced  through  the  use  of 
compartments as well as security and integrity levels.

The expansion of  this  work  to  encompass systems without  aligned security  and integrity 
levels involves about 9 times as many cases as the analysis presented here, but uses the 
same principals and mathematics, and is a straight forward extension of this work. A further 
extension of this work to the more general lattice structure is quite straight forward.

As an extension of the concepts of security levels, integrity levels, and compartments, there is 
no fundamental reason that an arbitrary dimensional space of security can not be used. The 
lattice  structure  goes  a  long  way  in  this  regard  and  allows  a  very  flexible  structure  for 
restricting  information  flow.  The  idea  of  allowing  users  access  to  multiple  places  in  the 
security lattice is a logical extension of allowing them access to multiple places in the more 
structured models. For extremely large networks, the management of this sort of policy might 
require significant software advances. As a first step, the automation of determining the worst  
case effects of the LR and MT attacks would seem straight forward, and would allow a very 
rough risk assessment as a precursor to administrative decision making.

Further work is required to derive actual designs of such a network, to finalize protocols for  
practical use, and to reduce this design to practice. With current cryptosystems, many secure 
network designs can be developed, but there may be some applications which require further 
cryptographic advances. Cryptography and cryptographic protocol analysis is being studied in 
the cryptographic community.

The use of a limited functionality network communications processor has been suggested, 
and implementations of are underway @cite[Cornwell]. It is important that the results of this  
work  be incorporated into  the  designs of  networks  using  these processors,  and that  the 
designers of these processors consider the effects of the attacks examined herein.

It appears that the design of secure computer networks is feasible, and that with a significant 
development effort, prototypes of the concepts derived here could be developed and tested. It  
is likely that within a few years secure multilevel networks will be operational and eventually 
will gain widespread acceptance in those communities with deep concerns for integrity and 
security. 
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Protection and Administration of Information Networks with 
Partial Orderings

We now extend the previous results in secure computer networks to a more general model,  
examine the effects of time on the protection and administration of information networks, and 
explore the implementation of provably secure automated administrative assistants for such 
networks.

Introduction

The  "security"  model  of  protection  in  a  computer  system  was  the  first  sound 
mathematical model of information flow that allowed proofs of mathematical properties to be 
used for establishing the security of a computer system @cite[Bell]. The basic structure of this 
model is a linear relation on a set of "security levels" that is used to prove that information can 
only flow in one direction through levels, and thus to prove that information entering a "higher" 
security level cannot "leak" to a "lower" security level.

A generalization of the security model to a lattice structure was first introduced by Denning 
@cite[Denning75], who noted that the linear relation could be generalized to a lattice structure 
in which "higher" and "lower" in the security model are mapped into supremum (SUP) and 
infemum (INF) respectively in the lattice. This affords the same degree of assurance and 
mathematical soundness as the security model, and allows more general information flow 
structures  to  be  used.  The  lattice  facilitates  more  accurate modeling  of  many  real  world 
situations, most notably the situation where many different "compartments" may exist at the 
same security level without information flowing between them.

A very sound basis for limiting this generalization to a lattice structure is that, in any single  
processor, hardware has access to all information, and thus there is a SUP whether we like it 
or not. Although this policy seems suitable for a single processor where there is necessarily a 
SUP, in a more general network, there is no such physical restriction. We should be able to  
exploit this physical generality with a corresponding mathematical generalization.

At about the same time as the lattice model was produced, it was shown that the dual of the  
security model could be used to model the "integrity" of information in an information system 
@cite[Biba]. The basic structure of this model is a linear relation on a set of "integrity levels"  
that is used to prove that information can only flow in one direction through those levels, and 
thus to prove that information in a "lower"  integrity  level  cannot "corrupt" information in a 
"higher" integrity level.

In implementation, policies are most often modeled by the "subject/object" model in which 
each of a set of "subjects" has or does not have each of a set of "rights" to each of a set of 
"objects"  @cite[Harrison].  The  "configuration"  of  the  rights  at  any  given  moment  are 
maintained in an "access matrix", and thus the rights of subjects to objects may be modified 
by modifying this matrix. By properly restricting the configurations to only those which fulfill a  
desired policy, we implement a provably secure system to meet the specified policy.

Figure 1 shows examples of  the security  and integrity  models  of  information flow. In  the 
security model, a subject at level "n" cannot read information from a level "i" s.t. i>n, or write  
information to a level "i" s.t. i<n. The former rule is called the "security-property", and the latter  
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rule is called the "*-property". The security-property prevents a user from reading higher level 
information,  and  is  commonly  called  "no  read  up".  The  *-property  prevents  a  user  from 
declassifying information, and is commonly called "no write down".  The integrity  model  is 
simply the dual of the security model.

Security Model Integrity Model

-------------- --------------

high |////////////| high |\\\\\\\\\\\\|

... |//no read///| ... |\\no write\\|

n+1 |////////////| n+1 |\\\\\\\\\\\\|

n |         | n |         |

n-1 |\\\\\\\\\\\\| n-1 |////////////|

... |\\no write\\| ... |//no read///|

low |\\\\\\\\\\\\| low |////////////|

-------------- --------------

\\\ = no write /// = no read

Figure 1 - The Security and Integrity Models

In figure 2, we show an example of a lattice based system and a corresponding access 
matrix. The generic rights in the access matrix for this example are read "r" and write "w",  
while subjects and objects correspond to places in the security lattice. We note in passing that 
the integrity model  has not  previously been extended to an integrity lattice (although this  
extension is immediately evident from the security lattice because of the duality of the integrity 
and security models). We may denote the relation "A can read B" by "A r B" and the relation  
"A can write B" by "A w B".

A Security Lattice Corresponding Access Matrix

Objects

        [a]    a  b  c  d  e  f  g  h

/ \ S a  rw r  r  r  r  r  r  r

     [b]   [c] u b  w  rw -  r  -  -  r  r

     |     / \ b c  w  -  rw -  r  r  r  r

     [d] [e] [f] j d  w  w  -  rw -  -  r  r

      \  /  / e e  w  -  w  -  rw -  r  r

       [g] / c f  w  -  w  -  -  rw -  r
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        \ / t g  w  w  w  w  w  -  rw r

        [h] s h  w  w  w  w  w  w  w  rw

Figure 2 - A Security Lattice and its Access Matrix

The formal rule for the security lattice policy is that a subject "S" may read an object "O" only  
if S is a security SUP of O, and S may write O only if S is a security INF of O. The formal rule  
for the integrity lattice is just the dual; S may read O only if S is an integrity INF of O, and S  
may write O only if S is an integrity SUP of O.

We note that because of the definitions given for the security model and the lattice model,  
there is  no mechanism provided to  prevent  writing  of  higher  level  objects  by lower  level  
subjects. The lack of integrity restriction in the security model and the corresponding lack of  
security restriction in the integrity model, is often countered by the use of a "discretionary" 
access control policy which allows subjects control over rights not explicitly restricted by the 
security or integrity policy @cite[Denning]. Although this may be of practical value in many 
cases,  the  only  administratively  enforceable  restrictions  on  the  flow  of  information  are 
embodied in mandatory policies.

A next logical step might be to incorporate the integrity model restriction of "no write up" in the 
security  model  to allow information to be read from below, but  not  written to above.  The 
problem with this policy is that an effective "write up" can be performed if there is ever a "read 
down", since the "read down" might allow a Trojan horse @cite[Fenton] to be placed at the  
higher level. The Trojan horse might read a particular low level object that describes objects 
to be read down, and thus effectively written up. In effect, we can generalize the "read" and 
"write" rights "r" and "w" to a single "flow" right "f" where:

(a f b) iff [(a w b) or (b r a)].

Preventing illicit dissemination and modification of information clearly calls for a policy that 
combines security and integrity. The combination of security and integrity policies of the sorts 
given above, results in the partitioning of a system into closed subsets under transitivity as we 
saw earlier. This partitioning is necessary in order to prevent global information flows.

Some Simple Demonstrations

We will  now use access matrices to  graphically  demonstrate properties of  interest  to  our 
studies. Although the solutions we show are for specific cases, they reveal general properties 
that are not necessarily self evident.

We begin with the matrix for the security and integrity models whose access conditions were 
stated  earlier,  and  their  combination  in  the  case  where  security  and  integrity  levels  are 
identically divided. This is shown graphically in figure 3:

Security Model Integrity Model Combined Model

h  +1 n  -1 l h  +1 n  -1 l h  +1 n  -1 l

-------------- -------------- --------------

high f  -  -  -  - f  f  f  f  f f  -  -  -  -
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n+1 f  f  -  -  - -  f  f  f  f -  f  -  -  -

n f  f  f  -  - AND -  -  f  f  f   = -  -  f  -  -

n-1 f  f  f  f  - -  -  -  f  f -  -  -  f  -

low f  f  f  f  f -  -  -  -  f -  -  -  -  f

Figure 3 - Combining the Security and Integrity Models

Another way to present this information may be used interchangeably when applicable, and 
the case from figure 3 is represented in figure 4. The property made clear by this example is 
that the combinations of the security and integrity models leads to a system that is closed 
under transitivity, and at best limits the spread of integrity corruption and/or security leaks to a 
closed subset of the system.

----- ----- -----

n+1 |///| |\\\| |XXX|

n |   | + |   |  = |   |

n-1 |\\\| |///| |XXX|

----- ----- -----

\\\ = no write /// = no read XXX = no access

Figure 4 - Combined Security and Integrity

A similar analysis can be used to demonstrate that, if a security lattice is combined with an 
integrity lattice such that security and integrity relations are identically aligned, isolationism 
results. We show this for an example in figure 5 (the previous lattice example with subjects a, 
b, and d removed):

Lattice        Security Lattice    Integrity Lattice     Resulting Matrix

       c  e  f  g  h        c  e  f  g  h        c  e  f  g  h

    [c]     c  f  -  -  -  -     c  f  f  f  f  f     c  f  -  -  -  -

   /   \    e  f  f  -  -  -     e  -  f  -  f  f     e  -  f  -  -  -

 [e]   [f]  f  f  -  f  -  - AND f  -  -  f  -  f  =  f  -  -  f  -  -

 /    /     g  f  f  -  f  -     g  -  -  -  f  f     g  -  -  -  f  -

[g]  /     h  f  f  f  f  f     h  -  -  -  -  f     h  -  -  -  -  f

  \ /

  [h]

Figure 5 - Combining Identical Security and Integrity Lattices

Cases where security and integrity levels are not aligned also tend towards isolationism as is 
shown in figure 6.

 Integrity  Security Combined

    [a] [a]     [c]



Page 72

   /   \    AND    \   /    =   [a] [b] [c]

[b]     [c]     [b]

  a  b  c   a  b  c   a  b  c

a f  f  f a f  -  - a f  -  -

b -  f  -  AND b f  f  f   = b -  f  -

c -  -  f c -  -  f c -  -  f

Figure 6 - Subject Combination

The "combination" of subjects, is a case where distinct subjects are combined from the point 
of view of the security or integrity policy as if they were a single subject. Thus any right given 
to one subject in a given model is automatically granted to the other. If we allow alignments to 
vary by combining sublattices of otherwise identical security and/or integrity structures, we 
achieve systems in which dissemination and corruption are limited to subsets of the system 
that are closed under transitivity. We show examples using the lattice from figure 5 above in 
figure 7 below, where e and f are combined in the integrity lattice, and where g and h are 
combined in the security lattice.

Security Lattice Integrity Lattice Combined Lattice

   c  e  f  g  h    c  e  f  g  h    c  e  f  g  h

c  f  -  -  -  - c  f  f  f  f  f c  f  -  -  -  -

e  f  f  -  -  - e  -  f  f  f  f e  -  f  -  -  -

f  f  -  f  -  - ANDf  -  f  f  f  f  = f  -  -  f  -  -

g  f  f  -  f  - g  -  -  -  f  f g  -  -  -  f  -

h  f  f  f  f  f h  -  -  -  -  f h  -  -  -  -  f

   c  e  f  g  h    c  e  f  g  h    c  e  f  g  h

c  f  -  -  -  - c  f  f  f  f  f c  f  -  -  -  -

e  f  f  -  -  - e  -  f  -  f  f e  -  f  -  -  -

f  f  -  f  -  - ANDf  -  -  f  -  f  = f  -  -  f  -  -

g  f  f  f  f  f g  -  -  -  f  f g  -  -  -  f  f

h  f  f  f  f  f h  -  -  -  -  f h  -  -  -  -  f

Figure 7 - Other Combined Security and Integrity Lattices

Notice that in the former case, since e and f are incomparable in the security domain and 
have identical SUPs, no effect is achieved by combining their integrity. In the latter case, g is  
given flow access to h. The resultant structure may be shown as a directed graph as in figure 
8.
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Integrity Security

    [c]    [c]

   /   \   /  \ [h] --> [g]

 [e]   [f] AND [e]  [f]   =

 /    /  |  / [e] [f] [c]

[g]  / [gh]

  \ /

  [h]

Figure 8 - A Graphic Representation of the Resulting System

We  stated  earlier  that  information  can  be  communicated  to  the  transitive  closure  of 
information flow starting at its initial source. Given an access matrix of the type shown above,  
we can compute an effective access matrix which tells us the potential information effects of 
subjects on other subjects under transitivity. A simple example is given in figure 9. This result  
is  not  likely  to  be  predicted  by  a  typical  security  administrator,  and  automated  tools  for 
evaluating access matrices to generate equivalent effective matrices may be quite useful. 
Efficient algorithms for this evaluation are not hard to find.

     An Access Matrix     Effective Equivalent

   a  b  c  d  e  f  g  h    a  b  c  d  e  f  g  h

a  f  -  -  -  f  f  -  f a  f  f  f  f  f  f  f  f

b  f  f  -  -  -  -  f  - b  f  f  f  f  f  f  f  f

c  -  f  f  -  -  -  f  - c  f  f  f  f  f  f  f  f

d  f  -  f  f  -  -  -  - d  f  f  f  f  f  f  f  f

e  f  -  -  -  f  -  -  - e  f  f  f  f  f  f  f  f

f  -  -  -  f  -  f  -  f f  f  f  f  f  f  f  f  f

g  f  f  -  -  -  f  f  - g  f  f  f  f  f  f  f  f

h  f  f  f  -  -  -  -  f h  f  f  f  f  f  f  f  f

Figure 9 - An Access Matrix and its Effective Equivalent

To see the above conclusion more clearly, we follow a simple series of steps as follows:

(a f a) and (a f e) and (a f f) and (a f h) ;given

(h f b) and (h f c) and (f f d) and (b f g) ;given

(a f h) and (h f b) => (a f b) ;conclusion

(a f h) and (h f c) => (a f c) ;conclusion

(a f f) and (f f d) => (a f d) ;conclusion

(a f b) and (b f g) => (a f g) ;conclusion

thus (a f *) ;a flows to all
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(a f a) and (b f a) and (d f a) and (e f a) ;given

(g f a) and (h f a) and (c f b) and (f f d) ;given

(c f b) and (b f a) => (c f a) ;conclusion

(f f d) and (d f a) => (f f a) ;conclusion

thus (* f a) ;all flows to a

(* f a) and (a f *) => (* f *) ;global communication

We conclude from these demonstrations that the access matrix is a useful tool for evaluating 
the effect of simultaneously using a security and integrity policy, that the combination of these 
policies tends to partition systems into closed subsets under transitivity, and that the transitive 
nature of information flow has far ranging effects on the security and integrity provided by a 
protection system.

More General Mathematical Structures

We have just seen that the most general form of flow control allows so much freedom to an 
administrator that seemingly sensible policy decisions may have unexpected, and potentially 
catastrophic,  effects  on the actual  protection provided.  The mathematical  structure of  the 
security  and  integrity  lattices  guarantees  that  information  flow  is  limited,  and  thus  that 
inauspicious administration cannot cause global access as in the last example. Unfortunately, 
this combination tends to produce situations where isolationism results, and this may be too 
severe a restriction for desired levels of communication. Furthermore, within a given place in 
the lattice, we may desire additional flow limitation.

There are three basic remedies to the above situation. One remedy is to limit the functionality  
of the system so that information may not be used in a sufficiently general manner as to have 
transitive effects.  This solution is infeasible for any general purpose machine, and little is 
known about the degree of limitation necessary to prevent transitive information effects. A 
second remedy is to limit the transitivity of information flow by keeping track of all subjects  
that have effects on objects and restricting certain sets of subjects from effecting certain sets 
of objects. This solution is difficult to implement, tends to move a system towards isolationism 
if imprecise implementations are used, and in order to be precise, requires an NP-complete 
implementation. The final remedy, and the one we will now consider, is to find a mathematical 
structure that is more general than lattices, and yet which maintains sufficient limitations on 
information flow to prevent the all consuming transitivity that arises in the most general case.

We begin by specifying the information flow relation "f". We assume transitivity of the flow 
relation,  and  thus  that  pairs  (and sets)  of  subjects  with  mutual  flow  are  equivalent.  We 
collapse each equivalence class into a single subject, and get an antisymetric transitive binary 
algebra.

(S,{f}):

(a f b) and (b f c) => (a f c) ;transitive

(a f b) and (b f a) => (a = b) ;antisymetric

We note  that  in  a  structure  where  equivalence  classes  collapse,  information  in  two  non 
identical equivalence classes A and B can not be related so that ((A f B) and (B f A)) since this 
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would make A and B identical by antisymetry. Furthermore, there can be no structure in which 
information flowing from A to B can reenter A since this would mean that (A f B) and (B f A) (by 
transitivity), and thus that A and B (and all other elements of this ring) are equivalent. Thus,  
we have a relation "<" such that A < B iff (A != B) and (A f B). We note that if there is a subject  
"b" so that not(b f b), then in all cases where there is a subject "a" so that a<b and a subject 
"c" so that b<c, we may eliminate subject b, and use instead, a<c. Thus we can systematically 
eliminate any such subject from the structure without changing the effective information flow 
behavior.  We conclude that  the structure of interest is a reflexive,  transitive,  antisymetric,  
binary relation, commonly called a partial  ordering,  and that this seems the most general  
structure we can use to guarantee restricted information flow. We will use the term "POset" to 
indicate a set whose elements are related by a partial ordering.

(S,{f}): for all a,b,c in S,

[(a f a) ;reflexive

and (a f b) and (b f c) => (a f c) ;transitive

and (a f b) and (b f a) => (a = b)] ;antisymetric

Figure 10 exemplifies this structure graphically where flow is directed from left to right. Notice 
that the difference between this and previous structures is in the lack of a SUP or INF for each 
pair of subjects. For example; a and b have no INF, so no subject can effect both; j and k  
have no SUP, so they cannot both effect any other subject; g and c have no SUP and no INF,  
so no single subject can either effect both or be effected by both; and i and j have both a SUP 
and an INF, so that subjects a, b, e, d, and f can effect both i and j, and subjects p and q can  
be effected by both i and j.

a--c-----h--k  m

 \         /  / \

b--d--f--i--l--n  p--q

 \   / \         /

   e--g  j-----o

r--t--v--x--y

    \   / \

s--u--w-----z

Figure 10 - An Example POset

We note here some of the results that can easily be attained from a POset by using figure 10 
as an example. The effective POset  under transitivity  is formed by applying transitivity  to 
information flow, and is more easily displayed in a matrix form. This answers the question of  
reachability  immediately  without  undue  complexity  to  the  observer.  We  call  the  effective 
POset under transitivity a "Flow Control POset" (FCP). The FCP corresponding to a portion of 
figure 10 is given in figure 11 below. Subjects can always be labeled so as to produce an 
upper triangular FCP matrix since, if there is no reordering of a non upper triangular matrix to 
an  upper  triangular  matrix,  there  must  be  two  equivalent  entries  under  our  transitivity 
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assumption. Every upper triangular boolean matrix maps into a unique POset,  but  not all  
upper  triangular  matrices  map  into  a  unique  FCP.  Finally,  we  note  that  completely 
independent subsets of a system can exist within a partial ordering as in figure 10, and that 
many distinct yet equivalent FCPs can thus exist.

  a  b  c  d  e  f  g

a f  -  f  f  -  f  -

b -  f  -  f  f  f  f

c -  -  f  -  -  -  -

d -  -  -  f  -  f  -

e -  -  -  -  f  f  f

f -  -  -  -  -  f  -

g -  -  -  -  -  -  f

Figure 11 - An FCP Example

The corruptive effects of subject collusion can be easily determined by ORing rows of any set 
of colluding subjects to find their effective joint flow. As examples, the effects of; c, d, and g 
colluding; and of a and b colluding; are given in figure 12. We quickly see that a and b can 
collude to  effect  the  entire  example;  while  c,  d,  and g  only  have limited collusive  effect. 
Similarly, the information accessible to a set of colluding parties can be derived by ORing the 
respective columns of the FCP matrix.  We see that c, d, and g may collude to leak the vast  
majority  of  information  in  the  system,  while  a  and b  only  have trivial  collusive  effects  in 
information leakage.  This indicates a general and fairly obvious fact about systems of this 
sort; flow sources have corrupting power, while flow recipients have leakage power.

  c, d, and g collude     a and b collude

     Corruptions

  a  b  c  d  e  f  g   a  b  c  d  e  f  g

c -  -  f  -  -  -  - a f  -  f  f  -  f  -

d -  -  -  f  -  f  - b -  f  -  f  f  f  f

g -  -  -  -  -  -  f ---------------------

--------------------- = f  f  f  f  f  f  f

= -  -  f  f  -  f  f

Leaks

  c  d  g  |  =   a  b  |  =

a f  f  -  |  f a f  -  |  f

b -  f  f  |  f b -  f  |  f

c f  -  -  |  f c -  -  |  -

d -  f  -  |  f d -  -  |  -
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e -  -  f  |  f e -  -  |  -

f -  -  -  |  - f -  -  |  -

g -  -  f  |  f g -  -  |  -

Figure 12 - Effects of Two Collusions

We note that the POset in this context is really a "classification scheme", just as the Bell-
Lapadula and Biba models are classification schemes.  We may, in practice, have equivalent 
subjects in an actual system, but we must be aware of the fact that they are in the same 
equivalence class from a flow standpoint,  in  order  to  understand the ramifications of  the 
configuration.

The Effects of Time on Flow Control

We  now  consider  the  effects  of  time  on  the  flow  of  information  in  the  case  where  the 
configuration of a protection system may change through administrative action. We call an 
indivisible modification of a protection system a "move", and define a move as "valid" iff the 
resulting configuration passes some set of tests on configurations. Our analysis of moves 
begins  with  restrictions  on  tests  for  determining  valid  configurations.  We  examine  three 
different time analyses of a system designed to enforce a flow policy. The "quasi-static case" 
is the case where only the configuration that results from a proposed move is of interest, and 
effects  of  previous configurations  are unimportant.  The "universal  time case"  is  the  case 
where effects of all past configurations are of interest to the validity of the proposed move. In  
this  case,  we  are  concerned  with  the  lingering  effects  of  corrupt  information  and/or  the 
eventual dissemination of information. As a compromise, the "window of time case" is the 
case where effects of a limited span of time are of interest to the validity of proposed moves.

We may implement our set of tests in any number of ways, but if we are to trust the system of 
tests as part of a trusted computing base, we should take care to design it in such a manner 
as to allow simple and straight forward proof of correctness. We choose a rule based system 
(RBS) which consists of a rule analysis method, an information base, and a set of rules which 
specify the desired tests. The basic algorithm we use for the RBS is; assume the proposed 
move; verify the validity of the resulting configuration by evaluating the rules; and accept or 
reject the move iff the rule evaluations are acceptable. Acceptable moves which are desired 
by the administrator may then be reflected in the access matrix.

We must be careful here, for there are several traps that the designer of such a system may 
fall  into. For example, certain rule sets may tend towards specific states of the protection 
system, while others may prevent certain valid states from being reached from other valid 
states. In order for a set of rules to be of practical utility, we must restrict them in at least  
some  basic  ways.   If  the  set  of  rules  are  inconsistent,  we  may  never  find  all  rules  in 
agreement, and thus no modification will be acceptable. If the rules are incomplete, we may 
have cases where rules cannot produce a result, and this is clearly unacceptable. We restrict 
ourselves to a finite set of rules since an infinite set of rules cannot be evaluated in finite time. 
Similarly, each rule must be decidable so that decisions are made in finite time. Finally, we 
require that the rules reflect the desired policy of the protection system, for if they do not, they 
are of little use. We note that many desirable policies are in practice unattainable, and that we 
must restrict ourselves to attainable goals if we wish to attain them.
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Since the validation process consists of testing the resulting configuration against the set of 
rules in force, any move that violates no rule will be accepted, and any move that violates any 
rule will  be rejected. Since an RBS can be quite simple in design and implementation, it  
should be relatively easy to prove its correctness using automated theorem proof techniques 
already used for proving correctness of secure operating systems. Once a basic RBS has 
been proven correct, we need only prove that rules are correct for a given policy in order to 
prove a given implementation correct. Security, integrity, and other properties of results are 
proven  by  proving  that  evaluations  performed  by  rules  in  the  RBS  are  mathematically 
consistent with the specified policy. Since the rules for these policies and the rules for the 
RBS are just mathematical conditions, this mapping should be quite simple.

Given that we have a provably correct RBS, we must select rules and analytical techniques. 
We now examine the effects of particular choices of rules on the accuracy of our results.

Consider the quasi-static case, wherein we simply use a set of rules which test the state of  
the access matrix resulting from the proposed move. The problem with this case is that there 
is a sequence of independently valid moves, which inadvertently allow information to flow 
where it should not. As an example, with the rules (C ~f B) and (B ~f C), users B and C may 
communicate as follows:

(B f A) ;information may flow from B to A

... ;and does as time passes

(B ~f A) ;B may no longer flow to A

(A f C) ;information may now flow from A to C

... ;B's information transits to C

We can see that if (B f A) and (A f C) were simultaneously true, an FCP computation would  
determine (B f  C)  from transitivity,  and thus a  move that  created this  situation  would  be 
dissallowed because of the rule (B ~f C). If we only examine the static configuration, there is 
no move that causes (B f C) to be instantaneously present in the FCP, and thus the sequence 
will be wrongly considered valid. This problem comes from the effect of time on information 
flow.

As  an  attempted  solution,  we  can  simply  ignore  the  removal  of  flows  in  the  evaluation 
process. This scheme, in effect, remembers all previous flows, and only permits flow if there is 
no  historical  flow  that,  when  combined  with  the  proposed  flow,  results  in  illicit  flow. 
Unfortunately, this solution is imprecise, in that there are legitimate moves, even in light of 
historical information, that will be considered invalid if we simply ignore all flow cancellations.  
An example is a sequence of moves as follows:

(A f C) ;information may flow from A to C

... ;and does as time passes

(A ~f C) ;A may no longer flow to C

(B f A) ;information may now flow from B to A

... ;and does as time passes

In this example, even though (A f C) and (B f A) are illegal together, there is no sequence of  



Page 79

events whereby information can ever flow from B to C or from C to B, and thus neither flow 
rule is violated.

We see that the actual sequence of moves must be considered if we are to precisely prevent  
illicit  flows  over  time.  To precisely  track  the  time transitivity  of  information  flow,  we must 
precisely track all effects of information from subject to object, and this has been proven NP-
complete  for  both  the  security  and  integrity  cases.   We can,  however,  obtain  a  precise 
solution, if we assume that any flow that can happen will happen (a conservative assumption 
in the flavor of Murphy's law).

In order to precisely determine the largest set of subjects which can effect a given object, we 
assume an initial configuration of the protection system, and maintain a precise configuration 
that reflects the maximum set of subjects that could have effected each object after each 
move.  We  call  this  configuration  a  "time  flow  configuration"  (TFC),  and  calculate  it  by 
remembering all transitive flows into each object for all moves as follows:

TFC at move 0 = FCP

for N>0, TFC at move N "(A f B)" =

   1 for all X,Y s.t. TFC(X,Y) at move N-1 => TFC(X,Y) at move N

   2 for all X s.t. TFC(X,A) at move N-1 => TFC(X,B) at move N

   3 TFC(A,B) at move N

   4 for all X s.t. FCP(B,X) at move N,

for all Y s.t. TFC(Y,B) at move N => TFC(Y,X) at move N

We may recall that an FCP is a one directional flow relation on a (subject,object) pair. A TFC 
is the same sort of relation. Our initial TFC is just the FCP of the initial configuration, since this 
indicates all potential flows into each object from each subject under transitivity. From this  
point forward, every move "(A f B)", introduces the possibility that a previous information flow 
to A transits to B and all objects in the transitive closure of B's information flow. Rule 1 states 
that previous flows remain after a move. Rule 2 states that all previous flows into A are added 
to B. Rule 3 states that A is added to the flows into B. Rule 4 states that all resulting flows into  
B are added to  all  objects  in  the transitive  closure of  flow from B.  Rule  3  is  implied by 
TFC(X,A) => TFC(X,B) if we assume (A f A).

Except for the FCP, this maintenance of the TFC takes at most N2 time and space in the 
number of subjects, and is linear in the number of moves considered.  The FCP computation  
takes at most N2 time and space in the number of subjects, and is performed only once per 
TFC calculation. It is thus quite feasible maintain the TFC throughout the lifetime of a typical  
network.

One problem with using the TFC for limiting moves is that it may become unduly restrictive as 
time  goes  on.  Information  aging,  for  example,  is  commonly  used  to  justify  automatic  
declassification of information, and a corresponding policy might be used to justify automatic 
removal of TFC flow restrictions. A "window of time" version of a TFC can be generated by 
assuming that the initial configuration of the system is the FCP configuration at the beginning 
of the window of time, and computing the TFC using all  subsequent moves.  We must of 
course remember all historical moves over the window of time, and must keep either historical 
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configurations or a complete sequence of historical moves from which we can recompute the 
FCP for the beginning of the window.

Additional uses arise if we wish to maintain a precise accounting of the potential effects of 
collusions over a given time span.  As an example, suppose we know that a given collusion 
was in effect over a given span of time, and wish to compute the maximum integrity corruption 
and security leakage that could have resulted from that collusion.  We may compute these 
effects by the following procedure:

get the FCP at the time of first collusion

compute the TFC till the end of the collusion

maximal corruption = all X s.t. for any Y in collusion, TFC(Y,X)

maximal leakage = all X s.t. for any Y in collusion, TFC(X,Y)

Automatic Administrative Assistance

By using the above mathematical basis, we can automatically evaluate the FCP, TFC, 
equivalencies of subjects, and effects of collusions under a given configuration of a protection 
system with a flow relation. We may augment this basic capability with a set of rules that 
determine whether a given configuration is allowable given installation dependent parameters, 
to form a configuration evaluator tailored for a given system. We may form a dynamic analysis 
system by performing  evaluations  on  configurations  resulting  from proposed  moves,  and 
reporting on the effects. Finally, we may augment this capability with a set of inductive rules  
for proposing moves that are likely to be acceptable to the protection system while fulfilling 
desired information flow requests. Figure 13 shows the architecture of such an RBS.

--------------- -------------

|Administrator|<------->| Induction |

--------------- --->|  Method   |

    | -------------

    | --------------     ---------

   -------------    --->| Rule Based |<-----| Rules |

   | Data Base |<------>|   System   |<---  ---------

   ------------- --------------   |

---------------  |

|Access Matrix|<--

---------------

Figure 13 - Architecture of an Automated Administrative Assistant

In a network where classical protection models are required, we may form an assistant based 
on  the  security  and  integrity  models.  We  use  the  mathematical  restrictions  on 
communications  under  these  models  as  the  rules  for  evaluation  of  configurations.  A 
configuration  is  acceptable  only  if  these  rules  are  not  violated.  Rules  for  evaluation  of 



Page 81

collusions, limiting FCPs and TFCs, and limiting equivalencies of subjects can be used to 
form more restrictive systems while still  maintaining security and integrity  constraints.  We 
assure that added rules do not allow violation of previous rules by using the union of rule 
evaluations for evaluating proposed moves.  Since rules themselves may contain complex 
conditionals, we lose no generality in this forced union.

Since inductive decision making is submitted to the RBS for acceptance, we need not trust 
the induction method, nor prove its correctness in order to be certain that we make no illicit 
moves. Indeed, we can design high level structures to generate a multitude of suggestions, 
have these suggestions submitted to the RBS, and use the results of evaluation to determine 
the utility of inductive paths and filter out invalid administrative suggestions.

A simple implementation of an assistant that maintains security, integrity, and compartments, 
while allowing arbitrary information flow controls within those restrictions, may be formed by 
implementing the following moves and using the previously explored techniques to validate 
resulting configurations:

To add an individual, we require that the minimum and maximum security and integrity levels, 
and the set of compartments are within system limits.

Add-individual A (min-sec,max-sec,min-int,max-int,effect,comp,comp,...):

Min Sec A >= Min Sec System

Max Sec A <= Max Sec System

Min Int A >= Min Int System

Max Int A <= Max Int System

Comp A SUBSET Comp System

To add a given ID for individual A, we need to know the individual, the compartment, the 
security level, and the integrity level for the given ID, and must verify that these don't cause 
the configuration to go beyond the allowable constraints on the individual.

Add-ID Ax (sec,int,comp):

Min Sec A <= Sec Ax <= Max Sec A

Min Int A <= Int Ax <= Max Int A

Comp Ax ELEMENT Comp A

To add an information flow from ID Ax to ID By, we must verify that the flow doesn't violate  
security, integrity, or compartment constraints:

Add-flow (Ax f By):

Sec Ax <= Sec By

Int By <= Int Ax

Comp Ax = Comp By

In order to remove flows, IDs, or individuals, we must verify that these removals don't cause 
other rules to be violated. In terms of the ability to produce valid configurations, removal has 
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an immediate benefit. With only security, integrity, and compartment constraints, a sequence 
of moves is valid iff each move in the sequence is valid. We are also guaranteed that any 
valid configuration of the protection system can be reached from any other valid configuration 
with only these moves.

Note that an ID or individual should really never be removed as it is sufficient to remove all  
relevant  information flows.  A good reason for  not  allowing individual  names or  IDs to  be 
reused, lies in the information aging problem. The reuse of an old ID by another individual,  
might  cause  a  naming  conflict  that  would  introduce  uncertainty  in  the  decision  making 
process.  Removal,  subsequent  reuse  by  another  individual,  removal,  and  reuse  by  the 
original individual might cause a condition where traces of the original flow effects are lost 
while the actual informational effects allow illicit flows. A rational use of the window of time 
analysis is for allowing reuse of old IDs.

Although  considerable  mathematical  work  is  still  required  to  investigate  underlying  policy 
issues  for  static  and  dynamic  configurations  of  protection  systems,  a  simple  automated 
administrative assistant  of  the  sort  shown above is  a  significant  step  towards eliminating 
errors in the administration and configuration of information networks. An assistant of this sort 
has been prototyped, and further developments along these lines are expected to include 
hierarchical protection systems and administration.

Summary, Conclusions, and Further Work)

We have shown by a series of arguments that the structure of preference for describing and  
the analyzing flow properties of information networks is the POset. We have demonstrated a 
difficulty with more general structures in that they obscure the ramifications of administrative 
decisions,   and  an  inadequacy  of  less  general  structures  for  describing  many  desired 
situations.  A design  for  a  provably  correct  automated  administrative  assistant  has  been 
shown, and a set of moves for maintaining traditional policies have been given.

The effects of transitivity, collusions, and time on the protection provided by flow control have 
been examined, and a variety of analytical techniques have been introduced for implementing 
accurate flow control protection in the presence of various time variant assumptions.

Extensions of these techniques can be used to consider the effects of collusions that change 
over time and sets of independent collusions. Similar analysis may also have implications to 
other domains such as game theory and its many related fields.

One particular extension allows us to measure the effects of discretionary access control. In 
order to include this in our analysis of the TFC, we need merely include discretionary moves 
in our TFC computation. This grants us a more accurate model of the actual behavior of a 
network, and assuming that discretionary access control operates correctly, yields provably 
valid results. 

A logical extension of this work is the analysis of systems where a hierarchy of administrators  
exist.  In  this  extension,  the  discretionary  controls  of  a  SUP administrator  are  mandatory 
controls of an INF administrator.  The analysis of valid moves over time for each level in the 
hierarchy enforces mandatory policies at that level. Information on actual configurations may 
be used by SUP administrators to allow more accurate configuration control  at the global 
level, while local controls allow better distribution of responsibility. It is likely that this work will 
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be  extended  to  include  special  purpose  security  and  integrity  transforms  which  allow 
distributed decision making.

Another extension of these ideas is in the case where we assume that information flow is not  
instantaneous or that transitivity is limited in some manner by the operating system. In the 
case where information flow takes time, we can associate a "flow speed" constraint that tells 
us how quickly flows may occur. The effect on our previous analysis is simply to limit the 
transitivity of information flow as a function of the time over which information is available and 
the flow speed. Although the analysis in this case is somewhat complex, the mathematics 
follows  directly  from what  we  seen  herein,  and  the  TFC computation  is  not  significantly 
complicated. In the case of limited transitivity, we must simply restrict our transitive closure 
assumption  to  a  finite  rather  than  infinite  number  of  flow steps.  The  basic  mathematical 
structure changes slightly because we no longer have the ability to equivocate subjects with 
mutual flow, even after a delay as we can in the limited flow speed case.

There are many applications of this work in a wide variety of domains. In the design and 
analysis of secure computer systems, this work is a logical extension of the works cited in the 
introduction. In the domain of industrial and international espionage, analysis of this sort is 
likely  to  provide  insight  into  the  potential  effects  of  leaks  and  misinformation,  and  the 
effectiveness of techniques which attempt to limit, detect, or compensate for these activities. 
Extensions to  limited flow speed systems will  likely  yield  results  of  interest  to  those who 
spread and attempt to quell rumors, to those who attempt to analyze the effects of infectious 
diseases, and to those who examine the effects of information on the society.

The techniques presented here allow improved analysis of exposures to informational losses, 
which is critical  to both protection and insurance of informational assets. This sort of flow 
analysis  may  also  be  helpful  for  optimizing  behavior  of  information  networks  for 
communication with privacy and integrity.

In the broader sense, we feel compelled to consider the relation of this work to similar work in 
protection of materials in process control and materials handling.  At the most fundamental 
level,  there  is  a  difference  between  information  and  physical  materials,  in  that  physical 
material falls under a conservation law, while information does not.  In essence, when we 
"leak" physical entities, there is a corresponding reduction in mass from the source of the 
leak.  Similarly, when we "corrupt" physical entities by introducing foreign substances, there is 
a corresponding increase in mass. When information moves through an information system, 
we have no such conservative metric with which to measure the effect.

Detection and Cure of Computer Viruses
Since prevention of computer viruses may be infeasible if widespread sharing is desired, and 
since sharing is often considered a necessity in modern computer systems, the biological 
analogy leads us to the possibility of detection and cure as a means of viral defense. We now 
examine the potential for detection and removal of viruses.

Detection of Viruses

In order to determine that a given program "P" is a virus, it must be determined that P infects  
other programs. This is undecidable since for any decision procedure "D", P could invoke D 
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and infect other programs if and only if D determines that P is not a virus. We conclude that a  
program that precisely discerns a virus from any other program by examining its appearance 
is infeasible.  In the following modification to program V, we use the hypothetical decision 
procedure D which returns "true" iff its argument is a virus, to exemplify the contradiction of D.

program contradictory-virus:=

{...

main-program:=

{if ~D(contradictory-virus) then

{infect-executable;

if trigger-pulled then do-damage;

}

goto next;

}

}

Contradiction of the Decidability of a Virus "CV"

By  modifying  the  main-program of  V,  we have  assured  that  if  the  decision  procedure  D 
determines CV to be a virus, CV will not infect other programs, and thus will not act as a virus. 
If D determines that CV is not a virus, CV will infect other programs, and thus be a virus. 
Therefore,  the  hypothetical  decision  procedure  D  is  self  contradictory,  and  precise 
determination of a virus by its appearance is undecidable.  We note that this proof differs 
slightly in presentation from the previous proof (Thm 6) of this fact, and refer the skeptical  
reader to that proof for self assurance.

Evolutions of a Virus

As we pointed out in our earlier discussions, we can create evolutionary viruses by forming 
viral sets such that each virus evolves into another element of the set. In this example of an  
evolutionary virus EV, we augment V by allowing it to add random statements between any 
two necessary statements.

program evolutionary-virus:=

{...

subroutine print-random-statement:=

{print random-variable-name, " = ", random-variable-name;

loop:if random-bit = 0 then

{print random-operator, random-variable-name;

goto loop;}

print semicolon;

}
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subroutine copy-virus-with-random-insertions:=

{loop: copy evolutionary-virus to virus till semicolon-found;

if random-bit = 1 then print-random-statement;

if ~end-of-input-file goto loop;

}

main-program:=

{copy-virus-with-random-insertions;

infect-executable;

if trigger-pulled do-damage;

goto next;}

next:}

An Evolutionary Virus "EV"

In general, determination of the equivalence of two evolutions of a program "P" ("P1" and 
"P2") is undecidable because any decision procedure "D" capable of finding their equivalence 
could be invoked by P1 and P2. If found equivalent they perform different operations, and if 
found different they act the same, and are thus equivalent. This is exemplified by the following  
modification to program EV in which the decision procedure D returns "true" iff  two input  
programs are equivalent.

program undecidable-evolutionary-virus:=

{...

subroutine copy-with-undecidable-assertion:=

{copy undecidable-evolutionary-virus to file till line-starts-with-zzz;

if file = P1 then print "if D(P1,P2) then print 1;";

if file = P2 then print "if D(P1,P2) then print 0;";

copy undecidable-evolutionary-virus to file till end-of-input-file;

}

main-program:=

{if random-bit = 0 then file = P1 otherwise file = P2;

copy-with-undecidable-assertion;

zzz:
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infect-executable;

if trigger-pulled do-damage;

goto next;}

next:}

Undecidable Equivalence of Evolutions of a Virus "UEV"

The program UEV evolves into one of two types of programs P1 or P2. If the program type is 
P1, the statement labeled "zzz" will become:

if D(P1,P2) then print 1;

while if the program type is P2, the statement labeled "zzz" will become:

if D(P1,P2) then print 0;

The two evolutions each call decision procedure D to decide whether they are equivalent. If D 
indicates that they are equivalent, then P1 will print a 1 while P2 will print a 0, and D will be  
contradicted.  If  D indicates that  they are different,  neither  prints  anything.  Since they are 
otherwise equal, D is again contradicted. Therefore, the hypothetical decision procedure D is 
self contradictory, and the precise determination of the equivalence of these two programs by 
their  appearance is  undecidable.  Again  the skeptical  reader  may refer  to  Lemma 6.1  for  
further assurance of these facts.

Since both P1 and P2 are evolutions of the same program, the equivalence of evolutions of a 
program is undecidable, and since they are both viruses, the equivalence of evolutions of a 
virus is undecidable. Program UEV also demonstrates that two unequivalent evolutions can 
both be viruses. The evolutions are equivalent in terms of their viral effects, but may have 
slightly different side effects.

An alternative to detection by appearance, is detection by behavior. A virus, just as any other 
program, acts as a surrogate for the user in requesting services, and the services used by a 
virus are legitimate in legitimate uses. The behavioral detection question then becomes one 
of defining what is and is not a legitimate use of a system service, and finding a means of  
detecting the difference.

As an example of a legitimate virus, a compiler that compiles a new version of itself is a virus. 
It is a program that 'infects' another program by modifying it to include an evolved version of  
itself. Since the viral capability is in all general purpose compilers, every use of a compiler is a 
potential viral attack. The viral activity of a compiler is only triggered by particular inputs, and 
thus being able to decide whether or not a compiler is a virus by its behavior leads directly to 
the determination of whether or not the input describes a virus, and thus whether it is a virus 
by virtue of its appearance. Since precise detection by behavior in this case leads to precise 
detection  by  appearance,  and  since  we  have  already  shown  that  precise  detection  by 
appearance is undecidable, it follows that precise detection by behavior is also undecidable.

Limited Viral Protection

A limited form of virus has been designed @cite[Thompson] in the form of a special version of  
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the C compiler that can detect the compilation of the UNIX login program and add a Trojan 
horse that  lets the author login. Thus the author could access any Unix system with this  
compiler. The compiler contains a virus that can detect compilations of new versions of itself 
and  infect  them  with  the  same  Trojan  horse.  Whether  or  not  this  has  actually  been 
implemented is unknown (although many say the NSA has a working version of it).

As a countermeasure, we can devise a new C compiler sufficiently different from the original  
as to make their equivalence very difficult to determine. If the "best program of the day" would 
be incapable of  detecting  their  equivalence in a  given amount  of  time,  and the  compiler  
performs its task in less than that much time, it could be reasonably assumed that the virus 
could not have detected the equivalence, and therefor would not have propagated itself. If the 
exact  nature of the detection were known, it  would likely be quite simple to work around 
without  going to this extreme.  Once a "clean"  version of  the C compiler  exists,  the login 
program can be recompiled for  renewed security,  and a "clean"  version of the original  C 
compiler can also be recompiled if desired.

Although we have shown that, in general, it is impossible to detect viruses, any particular 
virus can be detected by a particular detection scheme. For example, virus V could easily be 
detected by looking for V at the beginning of an executable. If the executable were found to 
be infected, it would not be run, and would therefore not be able to spread. The following 
program is used in place of the normal "run" command, and refuses to execute programs 
infected by virus V:

program new-run-command:=

{file = name-of-program-to-be-executed;

if first-line-of-file = 1234567 then

{print "the program has a virus";

exit;}

otherwise run file;

}

Protection from Virus V "PV"

Any particular detection scheme can be circumvented by a particular virus. As an example, if 
an attacker knew that a user was using the program PV as protection from viral attack, the 
virus V could easily be replaced with a virus V' where the first line was 123456 instead of  
1234567.  Much  more  complex  defense  schemes  and  viruses  can  be  examined.  What 
becomes quite evident is analogous to the old western saying: "ain't a horse that can't be 
rode, ain't a man that can't be throwed". No infection can exist that can't be detected, and no  
defensive mechanism can exist that can't be infected.

This result leads to the idea that a balance of coexistent viruses and defenses could exist,  
such that a given virus could only do damage to a given subset of the programs within a  
system, while a given protection scheme could only protect against a given subset of the 
viruses. If each user and attacker uses identical defenses and viruses, there might be an 
ultimate virus or defense.  It  makes sense from both the attacker's  point  of  view and the 
defender's point of view to have a set of (perhaps incompatible) viruses and defenses.
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In the case where viruses and protection schemes don't evolve, this would likely lead to some 
set of fixed survivors, but since programs can be written to evolve, the program that evolved 
into a difficult to attack program would more likely survive as would a virus that was more 
difficult to detect. As evolution takes place, balances tend to change, with the eventual result 
being  unclear  in  all  but  the  simplest  circumstances.  This  has  very  strong  analogies  to  
biological theories of evolution @cite[Dawkins], and the spread of viruses through systems 
might well be analyzed by using mathematical models used in the study of infectious diseases 
@cite[Baily]. We note here that although "survival of the fittest" may not be the desired mode 
of operation in modern computers, it appears inevitable in biological systems, and may also 
be inevitable as computer systems advance.

Imprecise Behavioral Detection

Since we cannot precisely detect a virus, we are left with the problem of defining potentially  
illegitimate use in  a decidable and computable way.  We might  be willing to  detect  many 
programs that are not viruses and even not detect some viruses in order to detect a large 
number of viruses. If an event is relatively rare in 'normal' use, it has high information content 
when it occurs, and we can define a threshold at which reporting is done. As an example, if 
sufficient instrumentation is available, flow lists can be kept which track all users who have 
effected any given file. Users that appear in many incoming flow lists could be considered 
suspicious. The rate at which users enter incoming flow lists might also be a good indicator of  
a virus.

This type of measure could be of value if the services used by viruses are rarely used by 
other programs, but presents several problems. If the threshold is known to the attacker, the 
virus can be made to work within it. A thresholding scheme could adapt so the threshold could 
not be easily determined by the attacker. This "game" can clearly be played back and forth. 
We note  that  as the threshold for  detection  is  lowered,  larger  and larger  percentages of 
legitimate programs will be detected as potential viruses. Since each potential virus must be 
examined for legitimacy, and since the threshold potentially  becomes lower and lower as 
more detection is desired, in the end we reach the situation where virtually every program in 
the system must be verified. If we are to verify every program in the system before use, we 
might as well forget the thresholding scheme altogether.

Several systems were examined for their abilities to detect viral attacks. Surprisingly, none of 
these systems even include traces of the owner of a program run by other users. Marking of  
this sort must almost certainly be used if even the simplest of viral attacks are to be detected.

Removal

Once a virus is implanted, it may not be easy to fully remove. If the system is kept running  
during removal,  a disinfected program could be reinfected. This presents the potential  for 
infinite tail chasing. Without some denial of services, removal is likely to be impossible unless 
the program performing removal is faster at spreading than the virus being removed. Even in 
cases where the removal is slower than the virus, it may be possible to allow most activities to 
continue during removal without having the removal process be very fast. For example, one 
could isolate a subset of the subjects and cure them without denying independent services to 
other subjects.
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In general, precise removal depends on precise detection, because without precise detection, 
it is impossible to know precisely whether or not to remove a given object. In special cases, it  
may be possible to perform removal with an inexact algorithm. As an example, every file 
written after a given date could be removed in order to remove any virus started after that 
date.

We note that at least one large class of viruses is, in practice, easily detected and removed. 
This is the class of nonevolutionary viruses.  If  we have a static  virus which is spreading 
throughout  a system, we can clearly detect it  by looking for identical sequences in many 
programs in the system. If  we detect  a large number of  identical sequences of sufficient 
length as to make them highly unlikely through accidental modification, and if we can verify 
that these sequences are not normally generated by legitimate programs (such as compilers), 
we have strong grounds for suspecting the presence of a virus. Once the identification as a  
virus has been established, it  can be systematically hunted down, and infected programs 
removed. We note that even a static virus may not be easily detected and removed, and that  
this method is by no means foolproof.

Spontaneously Generated Viruses

One  concern  that  has  been  expressed  and  is  easily  laid  to  rest  is  the  chance  that  a 
dangerous virus could be spontaneously generated on a real system. This is strongly related 
to the question of how long it will take N monkeys at N keyboards to create a virus, and is 
thus laid to rest without further attention except to note that the presence of such a virus, 
likely indicates a purposeful source rather than an accidental one.

A Complexity Based Integrity Maintenance Mechanism
In  a  system  with  multiple  users,  shared  information,  and  general  purpose  functionality, 
integrity corruption by viruses and other integrity corrupting mechanisms is possible. Since 
this sort of functionality is generally considered useful, it is desirable to find a means by which 
the integrity of information may be maintained when these properties are not restricted.

We now examine a method of "self defense" in which each program attempts to protect itself  
(and perhaps other information) by using self knowledge to detect illicit modification. It is likely 
that if timely detection is possible, redundancy (e.g. backup tapes) may be used to correct 
corruption.

The General Method

The basic idea is to cause the complexity of finding a systematic way to create undetected 
corruption to be very high, and the probability of causing such a corruption to be very low.

Our general method is to use a large set of self test techniques, which can be placed in a 
large number of ways throughout a system, and which rely on a difficult to forge cryptographic 
checksum for  detecting  illicit  modification,  while  still  allowing  legitimate  modification.  The 
argument for this general method is as follows:

• If  there are a large enough class of such tests,  then the complexity of determining 
whether  or  not  a  given portion  of  information  is  such a  test  may be very  difficult, 
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perhaps even undecidable.

• If these tests can be placed throughout the system in a sufficiently variable number of 
ways then it may be very hard to determine where or how they have been placed, and 
thus a very large number of places may have to be searched in order to locate them. 
When this is used in conjunction with making the tests difficult to recognize, preventing 
the tests from acting may be made quite difficult.

• Even if the tests are active, there is no guarantee that the information they test cannot 
be illicitly modified in such a manner as to be undetected by these tests. To prevent 
such undetected modification, an appropriate cryptographic checksum may be used to 
cause the probability of a modification resulting in a valid checksum to be arbitrarily 
small.

• In order to have a useful system of storing and retrieving information, we must allow 
legitimate  modification.  We do this  by  allowing legitimate  modification  only  by  self 
testing programs. This results in a partial ordering of integrity testing interdependency.

The remaining problem is to find a mathematically justifiable technique that fits all of these 
criterion.

Fundamental Limitations

Before suggesting a specific method, we wish to consider the fundamental limitations inherent 
to  the suggested general  method.  In  the cases of  finding classes of  tests  and adequate 
cryptosystems, the problems are not uncircumventable, as we will see later in this chapter. In 
the case of test placement, there seem to be some rather severe problems. The problem of 
self test in a system that allows legitimate modification appears to be difficult as well.

The Class of Tests

Commonalities in tests might be exploited to try to detect the presence of a test in a given 
location. We want a sufficiently large set of tests which can be stored in a sufficiently large 
number of forms to make detection sufficiently hard. A technique that makes test detection 
undecidable would be very nice, but we might be willing to settle for less. Note that nearly any 
commonality may be used for detection since the probability of a given sequence being found 
in a random other program decreases very rapidly with the length of the sequence. This is 
clear from information analysis of software in both source and compiled form, but need not be 
the case.

The Placement of Tests

Tests can be placed anywhere in the system where they will:

1. be  executed  often  enough  to  reduce  the  probability  of  a  corruption  spreading 
transitively to an acceptable level.

2. not corrupt the integrity of the system by their presence.
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If we place these tests in areas that are not interpreted as program, but rather as data, they 
will likely never be executed and result in the corruption of data. It is therefor important that 
they  be placed in  interpreted information  and  that  they act  independently  from the  state 
information used in normal activities.

Unless we partition the information being used as data from that being used as program, we 
cannot guarantee that a program will not examine its own contents and or modify itself in the 
course of  its  legitimate  behavior.  If  we try  to  partition  data  from program,  we cannot  be 
guaranteed that we will be successful unless we restrict the system's functionality, for with 
general purpose functionality, there is no distinction between information used as program 
and information used as data except in its interpretation. This is most clearly seen in the case 
of an interpreter (such as Basic) which allows information modified as data by an editor to be 
used as program when interpreted by the Basic interpreter.

This would seem to imply that placement depends upon knowledge of the intended use of  
information,  and that  general  purpose programs cannot  be perfectly  protected.  Since any 
general purpose program "P" can be made to act like a Turing machine, any data "D" entered 
by the user can be interpreted by P as a program. Since we cannot rely on "D" to preserve the 
integrity of its own data, we probably cannot do any better than to protect programs and data 
which cooperate with the scheme.

We may require that data which is to be modified with integrity must be modified by one of a 
given set  of  programs. We may be able to  design a compiler  that  forces checks on the 
integrity of data files as well as the set of programs able to legitimately access them. The only  
remaining problem is the placement of these checks within programs.

If we place tests in the beginning of programs, or at any standard place, they may be easily 
circumvented by appropriate modification of the code which tests for integrity. An alternative is 
placement at an arbitrary place, or perhaps more appropriately at one or many of a large set 
of places within a program. Since determining which section of code is the test may be made 
arbitrarily difficult, this offers some hope, but we must also consider that the placement of this 
code such that it  is  not  executed in every use of the program, reduces the probability of 
detecting  a  corruption  before  it  spreads  transitively,  to  that  of  executing  the  detection 
algorithm.

The placement of the code in each branch of a program may be quite cumbersome, and it 
guarantees an attacker that some test is placed in every branch. This may or may not be of  
aide  to  the  attacker,  and  may  or  may  not  be  so  burdensome  as  to  make  the  system 
impractical. Another alternative is to evolve the program so as to include the test, or to evolve 
the test so as to include the program. In any case, the evolution of programs in this way has  
received little attention in the literature, but it appears from our previous discussion that this 
technique is both feasible and difficult to disentangle.

The Cryptographic Checksum

The best we can do in a system which protects itself with complexity is make the probability of 
forgery and the difficulty of breaking the code in a given amount of time arbitrarily low. We do 
this  by  using  a  "one  way"  function  which  allows  us  to  transform  into  the  cryptographic 
checksum  in  order  to  test  the  program  for  modifications,  but  which  doesn't  allow  us  to 
generate a program that produces a valid checksum. We must be careful that the function is 
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not only one way, but that there are a sufficiently large number of keys available, and that the 
key used for generating the checksum cannot be used to invert the function.

We suggest a "public key" cryptosystem in which the private key is destroyed unrecoverably 
at the creation of the checksum. This prevents the possibility of finding that key and using it to 
generate a new and valid checksum for an invalid program. It also allows us to leave the key 
publicly accessible (although hidden along with the rest of the self test code) without fear of its 
eventual discovery and exploitation.

Modifiability

Let us now suppose that a legitimate program legitimately modifies information in a data file 
associated  with  one  other  legitimate  program.  In  order  for  this  change to  be  considered 
legitimate  by  other  programs,  each  must  be  convinced  of  the  legitimacy  of  the  program 
making the modification and of their own legitimacy. If other programs are to access the data, 
each must modify its self to reflect changes in data files. Since each has now been modified, 
each must verify that the others' modification was legitimate, and must again modify its self to 
reflect the new modification of each other. Since they test each other, this procedure must be 
repeated until either a stability point is reached or indefinitely.

If a stability point is reached, this means that a modification in one of the programs does not  
require  a  change  to  its  cryptographic  checksum,  and  thus  the  checksum  for  both  the 
legitimate and illegitimate versions are identical. If it is extremely unlikely for this to happen, 
this will only happen after a very long time if at all, and if it is likely, than it is also likely that an 
attacker's change would be thought legitimate. What this seems to indicate is that a strict 
limitation of the testing of programs and data by each other must be enforced in that we must  
not form a loop of interprogram tests.

In  other  words,  if  all  programs  are  modifiable,  at  least  one  program  must  have  sole 
responsibility for testing itself, and all other related programs must only perform tests on each 
other in a semi-lattice form with the self testing program at the "sup". This can be relaxed if we 
limit the legitimately modifiable portions of the system so that their modification is supervised 
by  legitimately  unmodifiable  programs.  Unmodifiable  programs  can  test  each  other  with 
mutual testing loops.

In cases where programs do not share modifiable data with other programs, data may also be 
tested.  For  cases  where  sharing  of  data  is  important,  we can use a single data  access 
program which is tested by all  sharing parties,  and which has complete control  over  the 
modification of all shared data. This program can then use internal tests on all stored data,  
and thus shared data can be tested without the looping problem. The resulting mathematical 
structure is a partial ordering with shared data residing only in semi-lattice substructures. For  
high assurance, increased mutual testing may be used.

A Specific Method

A specific method specifies a class of tests, a means by which they may be placed throughout 
the system, a checksumming method, and a modification method, all  satisfying the above 
criteria.
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The Class of Tests

An arbitrarily large number of programs can be written to generate and compare a given set 
of data with a stored value by starting with a fairly simple evolutionary program, and creating 
a large number of evolutions. It is in general undecidable to determine whether or not two 
evolutions  are  equivalent.  This  seems  a  promising  leaping  off  point  for  automatically 
developing a set of tests from a single test. If additional safety is desired, a large number of 
versions of the self test algorithm may be used in conjunction with evolution to guarantee that  
even if a given case were thoroughly broken, other cases would exist.

An intriguing variation on this theme for use with the RSA @cite[Rivest] cryptosystem, is the 
generation of a special purpose exponentiation algorithm for each of a large number of RSA 
keys. Since each exponentiation produces a slightly different algorithm @cite[Knuth], each 
test program will be different. This can of course be augmented by the use of evolutionary 
techniques to make each version of the test very difficult to detect. In addition, this prevents 
attacks in which the checksum for a given set of information is performed by the attacker, is  
searched for in the machine state, and is modified to fit the desired checksum for corrupt  
information. Since an attacker cannot easily determine what information belongs to the test 
program, and the key itself isn't even stored (only an algorithm for computing the effect of its  
use is actually kept), there is no known way to tell which key is being used.

The Placement of Tests

We suggest a lattice structure of testability in which all programs test themselves, and some 
programs test  each other.  When information must be modified or shared,  we suggest an 
independent program through which all modification must be performed, and which is an 'inf'  
to all programs with access to the shared data, and a 'sup' to all data shared by them. This 
allows each program to independently verify the propriety of the modification program.

One placement of tests is done by a special purpose compiler which has sufficient knowledge 
about  the programs to  allow a relatively  small  number  of  tests  to  be placed at  any of  a 
relatively  large combination of places within the program. Programs will  likely have to be 
restricted in some ways (e.g. no self modification), and all data files used by programs and all  
sharing behavior will have to be specified at compile time.

A second test placement strategy is the generation of a test algorithm, and the incorporation 
of the program to be tested along with a number of irrelevant sequences of instructions within  
it.  The value of the resulting checksum is computed based on all  but the final  checksum 
value, and this value is placed in a location determined at test generation time. Since each 
test  algorithm is different (below),  each program will  have a differently  placed checksum. 
Additional code strands may make it difficult to disentangle independent subsequences of the 
resulting code into test procedure and program.

Although specific algorithms are not yet available for this purpose, their development appears 
straight forward from previous work in evolutionary programs.

The Cryptographic Checksum

The following cryptographic protocol for creating difficult to  forge checksums appears to be 
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sufficient for the desired conditions.

1. Generate a key pair for the RSA cryptosystem, and destroy the private key.

2. Use the public key to encrypt each block of information to be checksummed along with 
the block number.

3. XOR all  of  the  encrypted blocks  to  form a cryptographic  checksum of  the desired 
information.

Note that since the inverse function is not available, it is infeasible to attempt to generate  
blocks of plaintext which correctly checksum to any given value. This prevents the attack 
where a forger forms any desired number of blocks of arbitrary information, encrypts each 
with the known public key, determines what the last block must checksum to in order to make 
the final  checksum come out  right,  and then generates a block which checksums to  the 
appropriate value to compensate for the forged blocks' incorrect values.

A Simple Variation for Software Protection

The above technique is quite complex, may suffer from poor performance, and may leave a 
lot to be desired in the general case. In the domain of software protection, a major difficulty is 
preventing  modification  of  a  program  for  resale  under  a  different  name.  This  simplified 
variation resolves much of the complexity of test placement within a program by distributing 
the integrity protection throughout the program so that each routine protects itself from both 
analysis and modification.

The basic idea is to encode each subroutine so that only it knows how to decode itself into a 
standard memory area. Since each routine can be made sequential and all execution strands 
can be kept track of for small enough program segments, the placement of tests within a 
routine  may  be  made  reasonable,  and  tests  may  be  interleaved  with  program.  When  a 
subroutine  is  called,  it  decodes  itself  into  a  standard  memory  area,  thus  overwriting  the 
previously decoded subroutine in that area. Data shared by subroutines may be decoded 
once at initialization, and stored in a common area for manipulation.

Since  only  a  small  portion  of  the  program  is  in  plaintext  at  any  given  moment,  many 
"snapshots" must be taken in order to expose a significant amount of the program. Since 
each  routine  is  designed  to  run  in  the  same  memory  locations,  absolute  addressing  is 
possible, and relocation of the program thus causes operation to fail. A trace of execution 
would be needed to determine relative calling sequences, and the problem of determining 
when decryption ends and execution begins may be quite difficult.

Each routine can be designed to test other routines in their stored form before calling them for 
execution (in a semi-lattice structure), so that the replacement of a routine is detected by 
other  routines.  Since  stored  routines  are  unchanging,  mutual  testing  loops  may  be 
incorporated where desired. Each routine can also be evolved so as to test itself.

Although this technique does not appear to be as strong as the more complex method, it may 
prove  sufficient  for  many  applications,  and  further  improvement  may  allow  it  to  be  of 
widespread utility.
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Conclusion

The first self defense  method appears to be ample for the intended purpose, but it suffers 
from slow performance in practical use, a very limited domain of applicability, and very difficult 
self test placement problems. The complexity of detecting and locating a given test appears to 
be very high. The probability of finding a systematic forgery technique in a given amount of  
time is at least as low as the probability of breaking the RSA cryptosystem in that amount of 
time. The probability of creating undetected information corruption can be made arbitrarily 
small by using sufficiently long keys. It thus appears that this technique is sufficient for some 
purposes, and that a compiler that produces 'self defending' code may be practical.

The use of the second self  defense method in preventing illicit  modification and resale of 
copyrighted software may be practical, although it does not prevent reuse in the original form. 
This allows the copyright notice to be forcibly maintained as long as the program operates, 
and may aide in the detection and prevention of copyright violations.

Both  methods  offer  hope  for  preventing  illicit  modification  of  information,  and  thus  of 
improving the integrity of  software and data stored in computer systems. It  is  hoped that 
further work will lead to the practical maintenance of integrity in future systems.

We  note  that  a  sufficient  amount  of  corruption  can  always  prevent  the  detection  of  the 
corruption by self test techniques. With these techniques, it is expected that such corruption 
would prevent operation of programs, and thus the corruption would be trivially detected by 
the  user  as  denial  of  services.  These  techniques  only  prevent  corruption  from  going 
undetected.

Further Work

Improvements to the techniques above may afford a more reasonable means of protecting 
information from modification, and may allow a run time implementation of self test for data 
files.

The use of semantic information in conjunction with syntactic information in the storage and 
retrieval of information may make this possible. This is (in essence) the effect of having a 
limited  set  of  programs  able  to  modify  data.  The  modification  programs  comprise  the 
semantics associated with the data.

Evolutionary algorithms for interleaving programs are only in their infancy, and much work in 
this area is expected. Close ties are seen here to biological systems, and a mathematical  
theory of evolution would be an intriguing work in both domains.

Error  detection  is  sufficient  for  detection  of  integrity  corruption,  but  does  not  allow  the 
correction of errors. Coding theory indicates that error correction should be possible if enough 
redundancy is used, and little enough corruption is performed to allow this redundancy to act  
properly.

The  second  technique  for  integrity  maintenance  touched  on  an  interesting  area  called 
generative program protection. This area is based on the idea that programs can be designed 
so as to generate code which actually performs the desired function. This is very similar to the 
genetic  code with  which DNA produces living beings.  It  is  thought  that  the complexity  of 
determining a valid genetic modification to a complex organism is extremely difficult. This is  
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the reason that genetic engineering is yet unable to design a human being to specifications.

Hardware assisted program protection is also possible. If we back away from our assumption 
that everything is subject to illicit  modification, and assume rather that only a very limited 
amount of the system is protected from corruption, we may be able to apply these techniques 
in such a manner as to remove all of the remaining problems.

Experiments with Computer Viruses
To  demonstrate the feasibility of viral attack and the degree to which it is a threat to real 
systems, several experiments were performed. In each case, experiments were performed 
with the knowledge and consent of systems administrators.  In the  process  of  performing 
experiments, implementation  flaws  were  meticulously  avoided.  It is critical to understand 
that  these   experiments  were  not   based   on   implementation  lapses,   but   only  on 
fundamental flaws in security policies, and that other systems with similar policies are thus 
likely to  experience  similar effects.

The First Virus

On  November  3,  1983,  the  first  virus was conceived as an experiment to be presented at 
a weekly seminar on  computer  security. The  concept  was  first introduced in this seminar 
by the author, and the name 'virus' was thought of by Len  Adleman.   After  8  hours  of expert 
work  on  a heavily loaded VAX 11/750 system running Unix, the first virus was completed and 
ready for demonstration.  Within a week, permission was obtained to perform experiments,  
and 5 experiments were performed.  On November 10, the virus was demonstrated to the 
security seminar.

The initial infection was implanted in a program called 'vd', a program that displays Unix file 
structures graphically, and introduced to users via the system bulletin board. Since vd was a 
new program on the system, no performance characteristics or other details of its operation 
were  known.  The  virus  was  implanted  at  the  beginning  of  the  program  so  that  it  was 
performed before any other processing.

In order to keep the attack under control, several precautions were taken. All infections were 
manually OKed by the attacker in a process whereby the virus attained access privileges and 
determined  the  program  to  be  infected,  and  the  attacker  gave  explicit  approval  for  the 
infection.  No illicit  dissemination  or  modification  of  information  was  done  other  than  that 
required for the experiment.  Traces were included to assure that the virus would not spread 
without  detection,  access controls  were  used  for the infection process, and the code 
required for the attack was kept in segments, each encrypted and  protected  to prevent illicit  
use.

The  particular virus invoked used considerable sophistication in determining what programs 
to  infect  in  various  situations.   By using  normally  available  system log information, the 
frequency with which various programs were run was extracted.  Further programs  were 
used  to  determine the users with write access to these programs, and special code was 
added to the virus so that upon execution by a  given user,  the  most  frequently  shared  
program  that was not previously infected, could be written by that user, and was executable 
by  other users,  was  chosen  for  infection.   All  of this "intelligence" was precomputed and  
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only the results were encoded in the virus.   In  this way,  the  virus was designed to move as 
quickly as possible from user to user.

To  allow  for  safe and simple disinfection, before infecting any given program, the virus 
copied the virgin version to a  temporary storage  area.  After each attack, the originals were 
copied back over the infected versions to "disinfect" them.  We  should  note  that  an attacker  
with  a specific objective might use this technique to cover the tracks of a virus  so  that  once  
moving   into   a   desired   area,  previously   infected   programs  would  be  automatically  
disinfected.   We also note  that  although these complications   were   introduced  to   the 
experimental  virus in this case, they need not be present for a viral attack  to  succeed,  and 
that  their  implementation  was  not  very difficult  or time consuming, so that they are not  
beyond the scope of an average users ability to use a system.

In each of five attacks, all system rights were granted to the attacker in under an hour.  The 
shortest time was under 5 minutes, and the  average  under  30  minutes.   Even those who 
knew the attack was taking place were infected.  In each case,  files  were  "disinfected" after 
experimentation.   It  was  expected  that  the attack would be successful, but the very short 
takeover times were  quite  surprising. In  addition,  the  virus  was fast enough (under 1/2 
second) that the delay to infected programs went unnoticed.

We  now  trace  the approximate sequence of events that led to the two fastest of these  
system takeovers.  We include here  only  the events  which  are  relevant  to  the takeover,  
and note the following features of the UNIX operating system.  The "system user"  (root)  has  
all  rights  on  the  system,  and  can  thus  read  or write anything including the operating 
system itself.  Once this  user  is  infected, the  system  is  considered  "taken over".  The 
"BBoard"  is  a  bulletin  board  which  allows  any  user  to  communicate  with  the   whole 
community, and  is  thus a very rapid means for publishing the existence of a new program.  
The  root  is  often  acted  for  by  programs  which   are automatically run when appropriate to 
a required task such as handling the  printer,  allowing  users  to login, etc. More often than 
not,  these  programs  are   run   by   the   root,   while   a  policy   of   "least   privilege" 
@cite[Denning]  would probably be more sensible.

Takeover 1:

Elapsed Time Event Effect

-----------------------------------------------------------

0 Program announced on BBoard existence published

3 min Administrator runs program system utility infected

5 min root executes utility All privileges granted

Takeover 2:

Elapsed Time Event Effect

-----------------------------------------------------------

0 Program announced on BBoard existence published

1 min Social user runs program "loadavg" infected

4 min Editor owner runs "loadavg" Editor infected
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6-12 min Many users use editor many programs infected

14 min root uses editor All privileges granted

Once   the   results   of   the  experiments  were  announced, administrators decided that no  
further computer  security  experiments would  be  permitted  on  their system.  This ban 
included the planned addition of traces which could track potential viruses,  and  password 
augmentation   experiments   which  could  potentially  have  improved security to a great 
extent.  This apparent fear reaction seems  to  be typical;  rather  than  try  to  solve technical 
problems technically, policy solutions are often chosen.  The problem with this  is  pointed out 
later in this section.

After  successful  experiments  had  been  performed on a Unix system, it was quite apparent  
that the same techniques would  work  on many  other  systems.   In  particular, experiments 
were planned for a Tops-20  system,  a  VMS  system,  a  VM/370  system,  and  a  network 
containing  several  of  these systems.  In the process of negotiating with administrators, 
feasibility was demonstrated  by  developing  and testing  prototypes.   Prototype  attacks  for 
the Tops-20 system were developed by an experienced Tops-20 user in 6 hours, a  novice 
VM/370 user  with  the  help  of an experienced programmer in 30 hours, and a novice VMS 
user  without  assistance  in  20  hours.   These  programs demonstrated  the  ability  to find 
files to be infected, infect them, and cross user boundaries.

After  several  months  of  negotiation  and  administrative  changes,  it  was  decided  that  the 
experiments  would  not  be  permitted.  The  security  officer  at  the  facility  was  in  constant 
opposition to security experiments. This is particularly interesting in light of an offer to allow 
systems  programmers  and  security  officers  to  observe  and  oversee  all  aspects  of  all  
experiments. In addition, systems administrators were unwilling to allow sanitized versions of  
log tapes to be used to perform offline analysis of the potential threat of viruses, and were  
unwilling to have additional traces added to their systems by their programmers to help detect 
viral attacks.  Although there is no apparent threat posed by these activities, and they require 
little time, money, and effort, administrators were unwilling to allow investigations. It appears 
that their reaction was the same as the apparent fear reaction of the Unix administrators.

A Bell-LaPadula Based System

In  March  of  1984,  negotiations  began  over  the  performance  of  experiments  on  a  Bell-
LaPadula @cite[Bell]  based system implemented on a Univac 1108.  The experiment was 
agreed  upon  in  principal  in  a matter  of  hours,  but  took several months to become 
solidified.  In July of 1984, a two week period was arranged for experimentation.  The purpose 
of this experiment was merely to demonstrate  the  feasibility of  a  virus  on  a  Bell-LaPadula 
based  system  by  implementing  a prototype.

Because  of the extremely limited time allowed for development (26 hours of computer usage 
by a user who had never used an 1108, with the assistance of a programmer who hadn't used  
an 1108  in  5  years), many  issues  were  ignored  in  the  implementation.   In particular,  
performance and generality of the attack were completely ignored.   As a result, each infection 
took about 20 seconds, even though they could easily  have been done more quickly.  Traces 
of the virus were left  on the system although they could have been eliminated to a large 
degree with  little  effort.   Rather than infecting many files at once, only one file at a time was  
infected.   This  allowed  the  progress  of  a  virus  to  be  demonstrated  very  clearly  without 



Page 99

involving a  large  number  of users or programs.  As a security precaution, the system was 
used in a dedicated mode with only a system disk, one terminal, one printer, and accounts 
dedicated to the experiment.

After  18  hours of connect time, the 1108 virus performed its first infection.  A fairly complete 
set of user manuals, use of the system, and the assistance of a past user of the system were 
provided to assist in the experiment. After 26 hours of use, the virus was demonstrated to a 
group of about 10 people including  administrators,  programmers, and  security  officers.  
The virus demonstrated the ability to cross user boundaries and move from a  given  security  
level  to  a  higher security  level.   Again  it  should be emphasized that no implementation 
flaws were involved in this activity,  but  rather  that  the  Bell-LaPadula model allows this sort 
of activity to legitimately take place.

All in all, the attack was not difficult to perform.  The code for  the  virus consisted of 5 lines of  
assembly code, about 200 lines of Fortran code,  and  about  50  lines  of  command  files.   It 
was estimated  by a systems programmer that a competent programmer could write a much 
better virus for this system in under 2 weeks.   In addition,  once the nature of a viral attack is 
understood, developing a specific attack is not difficult.  Each of the  programmers  present 
for  the  demonstration  was  convinced  that  they could have built a better virus in the same 
amount of time.

Instrumentation

In   early  August  of  1984,  permission  was  granted  to  instrument  a  VAX Unix  system to 
measure  sharing  and  analyze  viral  spreading. Data  at this time is quite limited, but several  
trends have appeared. The degree of sharing appears to vary  greatly  between  systems, 
and  many   systems   may  have  to  be  instrumented  before  these  deviations  are  well 
understood.  A small number of users appear to  account  for  the vast  majority  of  sharing, 
and  a  virus could be greatly slowed by protecting them.  The protection of a few "social" 
individuals  might also  slow  biological diseases.  The instrumentation was conservative in 
the sense that infection could happen without  the  instrumentation picking it up.

As  a result of the instrumentation of these systems, a set of "social" users were identified.  
Several  of  these  surprised   the   main  systems  administrator.   The  number  of  systems 
administrators was quite high, and if any of them were infected, the entire system would likely 
fall within an hour.  Some simple procedural changes were suggested to slow  this  attack  by 
several  orders  of magnitude without reducing functionality.  We include only a summary of  
results here as  the  raw data  is  about  1000  pages  in  length,  and  is  only  readable and 
practically  analyzable on a computer.   Copies of the analysis programs and some actual  
results are provided in the appendices, and confirming experiments would be welcomed.

  Summary of Spreading

system 1 system 2

 class|  ##  |spread| time |  class|  ##  |spread| time |

---------------------------- ----------------------------

|  S  |  3   |  22  |   0  | |  S  |  5   |  160 |   1  |

|  A  |  1   |   1  |   0  | |  A  |  7   |   78 | 120  |
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|  U  |  4   |   5  |  18  | |  U  |  7   |   24 | 600  |

Two   systems   are   shown,   with   three  classes  of  users  (S  for  system,  A for  system 
administrator, and  U  for  normal  user).   '##' indicates  the  number  of  users  in  each  
compartment, 'spread' is the average number of users a virus would spread to,  and  'time'  is  
the average  time  taken to spread them once they logged in, rounded up to the nearest 
minute.  Average times  are  misleading  because  once  an infection  reaches  the "root" 
account on Unix, all access is granted. Taking this into account leads to takeover times on the 
order  of  one minute, which is so fast that infection time becomes a limiting factor in how 
quickly infections can spread.  This  coincides  with  previous experimental results using an 
actual virus, and is quite surprising.

Users    who   were  not   shared  with  are  ignored  in  these calculations,  but  other  
experiments indicate that almost any user  can get  shared  with  by offering a program on the 
system bulletin board. Detailed analysis demonstrated that systems administrators tend to try 
these programs as soon as they  are  announced.   This  allows  normal users  to  infect 
system  files  within minutes.  Administrators used their accounts for running other users' 
programs and storing  commonly executed  system  files,  and several normal users owned 
very commonly used files.   These conditions make viral  attack very quick.   The  use of 
separate  accounts  for  systems  administrators  during  normal  use  was  immediately 
suggested,   and   the   systematic   movement    (after verification)  of  commonly  used 
programs into the system domain was also considered appropriate.

Other Experiments

Similar  experiments have since been performed on a variety of systems  to  demonstrate 
feasibility  and  determine  the   ease   of implementing  a  virus  on  many  systems.   Simple  
viruses have been written for VAX VMS and VAX Unix in the respective command  languages, 
and neither program required more than 10 lines of command language to implement.   The 
Unix virus is independent of the computer on which it is implemented, and is able to run under 
IDRIS, VENIX, and a  host  of other UNIX based operating systems on a wide variety of 
processors.  A virus written in Basic has been implemented in under 100 lines for the Radio 
Shack  TRS-80,  the  IBM  PC,  and  several other machines with extended Basic capabilities.  
Although this is a  source  level  virus and  might  be  detected  fairly easily by the originator of 
any given program, it is rare that a working program is examined by its  creator after  it  is  in  
operation.   In all  of  these cases,  the viruses have been written so that the traces in the 
respective  operating  systems would  be incapable of determining the source of the virus 
even if the virus itself had been detected.  Since the UNIX and Basic virus  could spread 
through  a  heterogeneous  network very easily, they are seen as quite dangerous.

As  of  this time, we have been unable to attain permission to either instrument or experiment  
on any other of the multiuser systems that these  viruses  were  written  for.   The  results  
attained for these systems are based on very simple examples and may  not  reflect  their  
overall behavior on systems in normal use.  It is with great hesitancy that  we  provide  the  
source code for a simple virus written for the IBM-PC under the DOS2.1 operating system in  
the  appendices.    Although confirmations of  results  herein  are encouraged,  we  do  not  
encourage experimentation  with  real viruses under any conditions except strict isolationism, 
and then only with knowing subjects and proper controls.
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Summary

The  following table summarizes the results of the experiments to  date.   The  systems  are 
across  the  horizontal   axis   (Unix, Bell-LaPadula,   Instrumentation,   etc.),  while  the 
vertical  axis indicates the measure of performance (time to program, infection time, number 
of lines of code, number of experiments performed, minimum time to takeover, average time 
to  takeover,  and maximum time  to  takeover),  where   time to  takeover  indicates that  all  
privileges would be granted to the attacker within that delay from introducing the virus.  In  the 
case  of  DOS2.1,  any  program that is run on the system hardware has complete control of  
the system,  and  thus  takeover  time  is  not  a meaningful measure.

Summary of Attacks

| Unix-C|  B-L | Instr |Unix-sh|  VMS | Basic | DOS2.1|

---------------------------------------------------------

Time | 8 hrs |18 hrs |  N/A | 15min | 30min | 2 hrs | 1 hr |

---------------------------------------------------------

Inf t |.5 sec |20 sec |  N/A | 2 sec | 2 sec | 15 sec| 10 sec|

---------------------------------------------------------

Code | 200 l | 260 l |  N/A |  7 l |  9 l | 30 l | 20 l |

---------------------------------------------------------

Trials |  5 |  N/A |  N/A |  N/A |  N/A |  N/A |  N/A |

---------------------------------------------------------

Min t | 5 min |  N/A |30 sec |  N/A |  N/A |  N/A |  N/A |

---------------------------------------------------------

Avg t |30 min |  N/A |30 min |  N/A |  N/A |  N/A |  N/A |

---------------------------------------------------------

Max t |60 min |  N/A |48 hrs |  N/A |  N/A |  N/A |  N/A |

---------------------------------------------------------

Viral  attacks  appear  to  be easy to develop in a very short time, can be designed to leave 
few  if  any  traces  in  most  current systems, are effective against modern security policies  
for multilevel usage,  and  require  only  minimal  expertise  to  implement.   Their potential  
threat is severe, and they can spread very quickly through a computer system.  It appears 
that they  can  spread  through  computer networks  in the same way as they spread through  
individual computers, and thus present a widespread and  fairly  immediate  threat  to  many 
current systems.

The  problems  with  policies that prevent controlled security experiments are clear; denying 
users the  ability  to  continue  their work  promotes  illicit  attacks; and if one user can launch  
an attack without using system bugs or special knowledge, other users will  also be  able to.  
By simply telling users not to launch attacks, little is accomplished; users who can be trusted 
will  not  launch  attacks;  but users  who  would do damage cannot be trusted, so only 
legitimate work is blocked.  The perspective that every attack allowed to  take  place reduces 
security is, in the author's opinion, a fallacy.  The idea of using attacks to learn of problems  is 
even  required  by  government policies  for trusted systems @cite[Klein] @cite[Kaplan].  It 
would be more rational to use open and controlled experiments as a resource  to improve 
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security.

Viruses and Life
When we investigate,  in  the mathematical  sense,  anything so closely  related to  our  own 
biological  existence  as  viruses,  we  seem  compelled  to  examine  the  implications  to  our 
understanding of  our  own existence.  Many philosophical  authors have examined possible 
sources of this compulsion, but it seems best summed up in the statement "know thyself". In 
the seemingly eternal quest for the origin and nature of life, few investigations have taken 
truly mathematical approaches. The game of "life", the "Central Dogma of Molecular Biology", 
and  numerous  articles  on  variations  of  the  theme  of  "self  replicating"  programs 
@cite[Hofstadter]  @cite[Dewdney]  @cite[Hofstadter2],  have  all  somehow  fallen  short  of 
examining  the  mathematical  essence  of  life.  Philosophical  discussions  such  as  those 
contained in "The Origin of Species" @cite[Darwin] and "The Selfish Gene" @cite[Dawkins] 
are indeed compelling, but lack one rigorous fundamental definition, the definition of life.

In  the  narrow  sense,  the  mathematical  discussion  of  computer  viruses  that  we  have 
presented is a discussion of a specific class of symbol sequences interpretable by a specific  
class of machines. In the much broader sense, it is a mathematical discussion of the two 
fundamental properties of life; reproduction and evolution. In reproduction, we have a basis 
for  the  informational  survival  of  the  life  form.  In  evolution,  we have  a  basis  for  change. 
Together, these form the essence of what we consider life.

Consider a crystal. It has the ability to reproduce, in the sense that it can replicate crystal from 
a small informational seed and a proper environment, but it has no capability for change. It  
will eternally produce more and more identical crystal, with only minor changes in its structure 
due to flaws in the purity of its environment. We would be stretching ourselves to consider the 
crystal alive because it does not change itself.

Consider water.  Water changes all  the time, it  ebbs and flows through its environment,  it  
evaporates, rains, snows, freezes, forms glaciers, and changes the face of the Earth. Water 
will ever undergo change, but it will never be able to reproduce itself. We would be stretching 
ourselves again to consider water alive because it cannot reproduce.

The esoteric investigator will point out that death does not occur when we are no longer able 
to reproduce, and that we consider animals such as the mule to be alive. Nevertheless, when 
we are past the age of sexual reproduction, our cells still reproduce and evolve, as do the 
cells of the mule. When these cells fail to reproduce, we are indeed dead, and in the sense of  
the meme @cite[Dawkins], we are alive until we are brain dead.

In our initial investigation, we sought to define the virus as a "program that can modify other  
programs so as to include a possible evolved version of itself". Perhaps fortunately, we were 
unable to find a mathematical definition that fulfilled this concept without defining a complex 
structure  of  subjects  and  objects  and  the  UPM  to  express  what  we  meant  by  another 
"program".  In  order  to  remain  general  in  our  definition,  we were  forced to  throw out  the 
perception that there is a fundamental difference between data and program, and as a result,  
we were forced to define viruses in such a manner as to include all symbol sequences with 
the property of reproduction and/or reproductive evolution on a given machine. Perhaps we 
should have more properly used the term "life" for this most general form of definition. Let us 
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do that and see where it takes us.

Our definition of life in the mathematical sense maps quite well into several domains. In the  
biological  domain,  we  have  a  feel  for  life,  probably  because,  assuming  our  readers  are 
biological, we are living it. The "Central Dogma of Molecular Biology" describes, in essence, a  
mechanism which, given the proper sequence of chemical instructions, yields a live biological 
entity. Note that the description of the mechanism is only half of the description of life. Given a 
mechanism, we are left to our own devices to discover "live" sequences. The game of "life" is  
similarly used to cajole us into the enumeration of interesting initial sequences of symbols 
which, for a given machine, produce "live" results.

The essence of a life form is not simply the environment that supports life, nor simply a form 
which,  given  the  proper  environment,  will  live.  The  essence  of  a  living  system is  in  the 
coupling  of  form with  environment.  The  environment  is  the  context,  and  the  form is  the  
content. If we consider them together, we consider the nature of life.

With our mathematical definition of life, we need not limit our study of living systems to the 
standard biological form. In order to fulfill our mathematical description, a living system must 
merely consist of an environment and a set of forms which reproduce and evolve within that 
environment. The "memes" of "The Selfish Gene" are a perfect example of a life form in the 
environment of mental activity. Without both the meme and the mental environment, we don't  
have  a  live  system.  In  the  information  systems  we  describe  herein,  we  speak  of  the 
computing machine as the environment, and sequences of symbols as the form. Together, 
they form a living system, if and only if reproduction and evolution are possible.

In this more general framework, we would like to review our previous mathematical results, 
keeping in mind always, that these results differ fundamentally from the sort of philosophical 
results usually seen in this context, in that they have been developed in a relatively formal 
system with relatively formal methods.

We have proven that there are an infinite variety of possible life forms for a general class of  
environments, and that evolution from form to form may, as eternity passes, yield an infinite  
number of unique forms. In the biological analogy, we may rest assured that the potential  
variety of life forms is quite numerous in any general form of environment, and that as life 
forms, we may be able to evolve through an almost unlimited number of generations without  
fear for our individuality. Similarly, we can rest assured that the number of new ideas that can 
arise will not be limited by the vastness of our store of knowledge, and that there will never 
come a time when an old idea cannot be evolved into a new idea. As an intellectual writer and  
as a biological form, these facts may offer significant comfort in the years to come.

We have proven that it is, in general, undecidable in finite time, whether or not a given form 
and given environment form a living system. Thus, even though we have a definition for life in  
the mathematical sense, we can not decide in all cases whether or not a form can live in an 
environment. In the biological sense, we cannot determine whether or not a general amino 
acid sequence is a coding for a living being or not. In the mental sense, we cannot determine 
whether or not a mental concept can spread from mind to mind.

We have proven that it is, in general, undecidable in finite time, whether or not a given form is 
an evolution of another given form in a given environment. In the biological sense, this tends  
to make questionable any proof that man evolved from apes. We do not contend that the 
theory of evolution is incorrect. In fact, in order to rationally consider the concepts we examine 
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herein, we must certainly come to the conclusion that certain forms may compete for survival 
in a given environment. Those more "fit" for survival can certainly be defined as those that 
tend to survive. Nevertheless, before we accept a claim that one form evolved from another,  
we should demand mathematical evidence of the feasibility of the claimed evolution.

Similarly, it is, in general, impossible to prove that a given idea did or did not evolve from 
another idea in a given mental system. Hence, we may view any attempt to write a program to 
detect plagiarism with suitable skepticism. We note that such programs exist for detecting 
cheating in certain computer science classes, and that suitable evolutions always manage to 
avoid  detection.  Perhaps  a  computer  virus  will  eventually  be  written  to  allow  simplified 
plagiarism against such automated defenses.

We have proven that, in a general purpose environment with transitivity and sharing, it is, in 
general, impossible to prevent viruses from spreading. In the biological domain, we now have 
a strong basis for the belief that there is no universal antibody, antidote, or other antiviral  
agent. Similarly, there can be no virus that cannot be successfully defended against by some 
biological form. In the mental environment, we may rest assured that regardless of the level of  
oppression, a society with any form of information exchange cannot prevent the spread of 
unwanted ideas. Similarly, we can rest assured that regardless of the degree of freedom of 
ideas, we can never prevent the spread of ideas that attempt to limit the freedom of other  
ideas to spread.

If there is a conclusion to be drawn about life from the study of computer viruses, it is likely 
this. In the computer, in the mind, and in all forms of life, it will always be as it has always  
been, a struggle for survival.

Summary, Conclusions, and Further Work
We have already provided summaries of each portion of this work at their completion, and 
now quickly summarize the new lines of research and major results presented herein. The 
conclusions provided here are only the tip of an iceberg, and the reader is invited to make 
further conclusions, preferably through publication in the open literature. As in the opening of  
any novel field of research, a great deal of further work is indicated. We provide a fairly short  
list of the lines of research considered of the most interest to us, but make no claim as to the 
completeness or likelihood of success in the pursuit of these particular lines.

Summary

The field of computer viruses is an entirely new field, and its introduction alone is novel. The  
definition  of  viruses  for  Turing  machines,  demonstrations  of  TM  viruses,  and  initial 
explorations into the number and sizes of viral sets and the nature of evolutionary programs is 
of considerable interest. Computability results which prove the undecidability of viral detection 
and detection of evolutions of programs is of considerable import to the remainder of the work 
presented herein, and the demonstration of the generality of evolution as a computational 
mechanism is worthy of note.

The introduction of the "Universal Protection Machine" and its use to demonstrate the results 
of computational capabilities on the protection of systems is a novel extension of previous 
work in the field of protection modeling. The use of this model to demonstrate the transitive  
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nature of integrity corruption is particularly worthy of note as it has many ramifications for the 
security and integrity of information in information systems beyond its obvious import to the 
study of computer viruses.

The new results in the effects of combining the security and integrity models for computer 
security shed considerable light on their effectiveness in maintaining controls on information 
flow, most importantly in their partitioning of systems into closed subsets under transitivity.  
The  resultant  development  of  limited  transitivity  systems  for  restricting  the  distance  of 
information flow without restricting the available paths of sharing is also a novel development  
with potential uses in future systems.

The use of distributed domains in a computer network is novel in the computer security area, 
and provides the basic potential for treating remote sites as secure. The demonstration of a  
protocol for the secure implementation of this network has several novel aspects including a 
new method for  secure  key distribution in a public  key cryptosystem,  the ability  to  move 
information  through  networks  without  common  levels  while  maintaining  all  security  and 
integrity controls, and the maintenance of these controls in the presence of attackers. The 
analysis of networks under attacks such as those included herein is also novel in the open 
literature, and the resultant demonstration of several vulnerabilities in the manner in which 
current computer security systems are used is also noteworthy.

The combination and generalization of the linear and lattice models of information flow to the  
partial  ordering,  and  the  resultant  development  of  mathematical  analysis  techniques  for 
evaluation  of  effective  flow  control  and  effects  of  collusion  are  significant  in  their 
generalization  of  the  basic  principals  explored  earlier  in  this  work.  The  time  transitivity 
analysis of protection systems is novel and appears to shed significant light on an error in the 
use of many modern protection systems. The specification of an automated administrative 
assistant and a provably correct rule based system for managing security and integrity in 
information networks is likely to find rapid application, and the extensions of these results to 
other domains is likely to have wide ranging effects.

The complexity  based integrity  maintenance  mechanism offers  a glimmer  of  hope in  the 
design of systems which use built in self test for self defense against viral and other integrity  
corruption mechanisms. The similarity between this defense and the biological situation is 
striking.

The demonstration of viruses on actual systems and the collection of initial data reflecting the 
severity  of  viral  attack  are novel  results  which not  only  lend considerable support  to  the 
contentions  and  results  presented herein,  but  also  dramatically  show  the  presence  of  a  
gaping  hole  in  many  systems  previously  considered  as  having  the  potential  for  secure 
operation. The existence of command language and very short viruses shows the ease of  
implementation,  while  the  attacks  themselves  should  leave  little  doubt  that  a  fairly 
unsophisticated attacker might easily circumvent even a sophisticated security system with 
relative ease.

Conclusions

Absolute protection can be easily attained by absolute isolationism, but that is usually an 
unacceptable solution. Other forms of protection all seem to depend on the use of extremely  
complex and/or resource intensive analytical techniques, or imprecise solutions that tend to 
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make systems less usable with time.

Prevention appears to involve restricting legitimate activities, while cure may be arbitrarily 
difficult without some denial of services. Statistical methods may be used to limit undetected 
spreading either in time or in extent. Behavior of typical usage must be well understood in 
order to use statistical methods, and this behavior is liable to vary from system to system. 
Limited forms of detection and prevention could be used in order to offer limited protection 
from viruses.

Every general purpose system currently in use is open to at least limited viral attack. In many 
current 'secure' systems, viruses tend to spread further when created by less trusted users. 
Experiments  indicate  that  viruses  spread  quickly  and  are  easily  created  in  a  variety  of 
operating systems.

The results presented are not operating system or implementation specific, but are based on 
the fundamental properties of systems. More importantly, they reflect realistic assumptions 
about systems currently in use. The virus essentially proves that integrity control must be 
considered an essential part of any secure operating system.

A major conclusion of this thesis is that the goals of sharing in a general purpose multilevel 
security system may be in such direct opposition to the goal of integrity maintenance as to 
make their reconciliation and coexistence impossible.

Significant examples of evolutionary programs have been developed, and the demonstration 
of undecidability  for  viral  evolutions is also true for nonviral  evolutions.  We conclude that 
many complexity based schemes for attack and defense may be possible through evolution.

Secure computer networks are likely to be implemented in the  ear future, and many of the 
ideas presented here will have effects on their designs. Automated administrative assistance 
is likely to be in common use in the near future, with particular application to the domain of 
detection and prevention from damage due to spies.

Further Work

The field of computer viruses and transitive integrity corruption mechanisms is still very new, 
and clearly a great deal of fundamental work is still  necessary before the exact nature of 
viruses is well understood.

It has been suggested that the exact degree of undecidability of determining whether or not a 
given program is a virus may be of interest, and it appears that in the case of a virus that 
halts, a TM with an oracle for deciding whether a TM with an oracle for deciding whether a TM 
halts could determine whether or not a program is a virus. The procedure is to eliminate all 
programs that don't halt, and then write a program that simulates each sequence of symbols 
resulting from programs that halt, each sequence produced by them, etc. If this program halts, 
then the sequence under consideration is not a virus because there is a case where it no 
longer produces a virus outside itself. Although this discussion does not constitute a proof, it  
is likely that one may soon be generated from it.

The field  of  evolutionary programs is  also  novel,  and it  appears  to  offer  a  great  deal  of  
promise for better understanding the nature of biological evolution as well as the evolution of  
other types of systems that may or may not be artifacts. The demonstration of the "survival of 
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the fittest" result for computer systems may be of interest in several domains. Evolution has 
already proven useful in the design of a complexity based integrity maintenance mechanism 
which may be able to maintain integrity in a system with no built-in protection.

The UPM is  quite  general  in  that  it  allows modeling of  operating  systems and computer  
networks in a manner that permits mathematical analysis of interactions of programs with a 
protection  mechanisms.  Extending  its  use  to  other  related  areas  may  prove  fruitful,  and 
extending its generality still further may be of some interest.

The prototype implementation of a limited transitivity system appears to be a logical extension 
of the results presented in the use of transitivity limitation for protection against transitive 
corruption,  and some variation  of  the  scheme presented here  may be of  value  in  future 
research.

The implementation of a network based on distributed domains is already under consideration 
by several groups, and it is likely that such a network will be in operation within the next few 
years. Extensions to the analysis of secure computer network design are already underway, 
and it is hoped that this contribution will have effects on a quite large effort underway at this 
time to  determine the  requirements  for,  design,  and  implement,  the  first  provably  secure 
computer networks.

Extensions of the results in modeling flow control with partial orderings are likely to result in 
the development of more general principals in distributed administration of secure networks, 
analysis of the effects of redundancy and self test components on security and integrity, and a 
wide range of results in the analysis of protection of data. The time transitivity model is likely 
to have wide ranging effects on the administration of current information systems in a variety 
of areas, and the automated analysis and administration of protection systems is likely to be 
in widespread use in the very near future.

Extensions of the analysis of networks under attack are likely to be done in the near future as  
they appear to shed significant light on the potential effects of both human and hardware 
failures. It is quite likely that such analysis will be required by the U.S. government in any 
trusted computer network criterion, and the techniques in current use are simply inadequate 
to provide any level of assurance.

Extensions of the complexity based integrity maintenance mechanism are likely to result in 
the eventual development of efficient and effective protection against viruses, Trojan horses, 
and a wide variety of other integrity corruption mechanisms. When combined with hardware 
controls, these techniques are likely to find widespread application, particularly in the area of  
copyright protection.

Further experiments with viruses and defensive measures in computer systems and networks 
is  clearly  called for,  and a safe environment for  the performance of  such experiments  is  
clearly required. The analysis of viral spread in computer networks is closely related to the 
analysis of viral spread in biological situations, and it is likely that the models in both domains 
will be merged and extended to better model the behavior of both mechanisms.

It  is  quite  likely  that  many  other  extensions  to  this  work  will  be  done,  and  we  wish  to 
encourage all such work to as great an extent as possible, so long as proper precaution is  
used.
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Appendices
We  have   attempted  to   present   as   many of  the  experimental  results  as  are 

reasonable and possible in the context of  our  limited space.   We  have taken the liberty of  
slightly  reformatting  output  to  conserve  space,  and  the  actual  runs  of  the   presented 
programs  would not  look  quite  identical to the presented results.  The results are however  
genuine, and we invite others to reproduce them to confirm our results.

Turing Machine Simulation Code

This  appendix  contains  the  basic   simulation code used for simulations of the Turing 
Machine examples used in earlier  chapters of  this thesis.   All  of  the code used in these 
examples is written in the muLisp variant of the lisp language.  Simulations were performed 
on  a personal  computer,  and  may  be  independently  verified  either  by inspection or by  
simulation on the machine of  the  observers  choice. In  cases  where  the printout of entire 
simulations would be long and tedious, we  have  replaced  unnecessarily  repetitious  entries 
with "...".   In  each  case, we include the portion of the simulation code which is specific to the 
example (i.e.  the  next-state,  output,  and tape  movement  functions)  in  the text prior to the  
execution of the simulation.  Comments are predominantly in lower case,  while  program  text 
is predominantly in upper case.

We begin with the basic simulation support program:

@begin(programexample)

% ---------------------------------------------------- %

% Default assignment of initial variables %

% ---------------------------------------------------- %

(SETQ TAPE '(I0 I0 I0 IHALT)) % TM tape %

(SETQ STATE 'S0) % FSM state %

(SETQ POSITION 0) % head position %

(SETQ TRACE-TM T) % activity trace on %

(SETQ EMPTY NIL) % blank tape symbol %

(SETQ TIME 0) % initial move number %

% ---------------------------------------------------- %

% Execution control of the TM % 

% ---------------------------------------------------- %

% ONE-MOVE executes one move of the TM %

(DEFUN  ONE-MOVE  (LAMBDA  (TMPSTATE  TMPOUTPUT  TMPMOVEMENT  TMP 
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OLDSTATE)

(SETQ TMP (NTH POSITION TAPE)) % get the tape symbol at position %

(SETQ TMPSTATE (NEXT-STATE STATE TMP)) % determine next state %

(SETQ TMPOUTPUT (OUTPUT STATE TMP))% new tape symbol %

(SETQ TMPMOVEMENT (MOVEMENT STATE TMP)) % tape movement %

(COND ((AND (EQUAL TMPSTATE STATE) (AND (EQUAL TMPOUTPUT TMP)

(EQUAL TMPMOVEMENT 0))) % test for no change %

(SETQ TMPSTATE 'SHALT))) % if so, HALT state %

(SETQ TAPE (ONELIST (FIRSTN POSITION TAPE) % form new tape %

(ONELIST (LIST TMPOUTPUT) (LASTN (PLUS 1 POSITION) TAPE))))

(SETQ OLDSTATE STATE)

(SETQ STATE TMPSTATE) % change state %

(SETQ POSITION (MAX 0 (PLUS POSITION TMPMOVEMENT))) % change position %

(COND (TRACE-TM % if tracing activity, print out information %

(PROGN

(PRIN1 "Input => ") (PRIN1 TMP)

(PRIN1 " State => ") (PRINT OLDSTATE)

(PRIN1 "New State => ") (PRIN1 TMPSTATE)

(PRIN1 " Output => ") (PRINT TMPOUTPUT)

(PRIN1 "Movement => ") (PRIN1 TMPMOVEMENT)

(PRIN1 " New Position =>") (PRINT POSITION)

(PRIN1 "New Tape => ") (PRINT TAPE)

TMPSTATE)

)

(T TMPSTATE) % and return new state %

) 

))

% RUN executes successive moves until the halting state is reached %

(DEFUN RUN (LAMBDA (MAXTIME TMP)

(SETQ STATE 'S0) % initial state is always S0 %

(LOOP ((EQUAL (ONE-MOVE) 'SHALT))% loop executing ONE-MOVE till SHALT %

(PRIN1 "Time = ") (PRINT TIME) (PRINT "") % notify the user %
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(SETQ TIME (PLUS 1 TIME)) % increment the time each move %

(RECLAIM) % and reclaim any available storage space %

((AND (NUMBERP MAXTIME) (GREATERP TIME MAXTIME)))

% pause at TIME <= MAXTIME if so requested %

)

(COND ((EQUAL STATE 'SHALT) "Machine Halted") % report machine halt %

(T "Run paused by user request") % report machine pause %

)

))

% RUNON like run but does not set initial state (for continue after pause) %

(DEFUN RUNON (LAMBDA (MAXTIME TMP)

(LOOP ((EQUAL (ONE-MOVE) 'SHALT))% loop executing ONE-MOVE till SHALT %

(PRIN1 "Time = ") (PRINT TIME) (PRINT "") % notify the user %

(SETQ TIME (PLUS 1 TIME)) % increment the time each move %

(RECLAIM) % and reclaim any available storage space %

((AND (NUMBERP MAXTIME) (GREATERP TIME MAXTIME)))

% pause at TIME <= MAXTIME if so requested %

)

(COND ((EQUAL STATE 'SHALT) "Machine Halted") % report machine halt %

(T "Run paused by user request") % report machine pause %

)

))

% ---------------------------------------------------- %

% Utility functions to support operation %

% ---------------------------------------------------- %

% ONELIST merges two lists into one %

(DEFUN ONELIST (LAMBDA (A B)

(COND ((ATOM A) B)

(T (CONS (CAR A) (ONELIST (CDR A) B)))

)
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))

% FIRSTN returns the first NUM elements of a list %

(DEFUN FIRSTN (LAMBDA (NUM LST)

(COND ((LESSP NUM 1) ())

(T (ONELIST (LIST (CAR LST)) (FIRSTN (PLUS -1 NUM) (CDR LST))))

)

))

% LASTN returns all but the first NUM+1 elements of a list %

(DEFUN LASTN (LAMBDA (NUM LST)

(COND ((LESSP NUM 1) LST)

(T (LASTN (PLUS -1 NUM) (CDR LST)))

)

))

% ---------------------------------------------------- %

% User modifiable functions describing TM operation %

% ---------------------------------------------------- %

% NEXT-STATE as a function of state and tape symbol %

(DEFUN NEXT-STATE (LAMBDA (STATE INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 'S0)

((EQUAL STATE 'SHALT) 'SHALT)

((EQUAL INPUT 'IHALT) 'SHALT)

((EQUAL INPUT EMPTY) 'SHALT)

(T 'S0)

)

))

% OUTPUT as a function of state and tape symbol %

(DEFUN OUTPUT (LAMBDA (STATE INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 'I0)
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((EQUAL STATE 'SHALT) 'IHALT)

((EQUAL INPUT 'IHALT) 'IHALT)

((EQUAL INPUT EMPTY) 'IHALT)

(T 'I0)

)

))

% MOVEMENT as a function of state and tape symbol %

(DEFUN MOVEMENT (LAMBDA (STATE INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 1)

((EQUAL STATE 'SHALT) 0)

((EQUAL INPUT 'IHALT) 0)

(T 0)

)

))

(RDS)

@end(programexample)

@section(Theorem 2 Simulation)

This simulation implements the Turing Machine used to

demonstrate theorem 2.

@begin(programexample)

%  Theorem 2 from Fred Cohen's thesis%

% SxI N O D %

% -------------------------- %

% S0,0 S0 0 0 %

% S0,1 S1 1 +1 %

% S1,0 S0 1 0 %

% S1,1 S1 1 +1 %

% -------------------------------------------- %

% User modified code for a given TM starts here %



Page 113

% -------------------------------------------- %

% the next state function of current state and input symbol %

(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 'S0)

((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I1)) 'S1)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'I0)) 'S0)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'I1)) 'S1)

(T 'S0)

)

))

% the output function of the current state and input symbol %

(DEFUN OUTPUT (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 'I0)

((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I1)) 'I1)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'I0)) 'I1)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'I1)) 'I1)

(T 'I1)

)

))

% the tape movement function of the current state and input symbol %

(DEFUN MOVEMENT (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 0)

((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I1)) 1)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'I0)) 0)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'I1)) 1)

(T 0)

)

))

% -------------------------------------------- %
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% Basic structures and variables %

% -------------------------------------------- %

(SETQ TAPE '(I1 I0 I0 I0 I1 I1 I0 I0 I0 I1 I0 I0))

(SETQ STATE 'S0)

(SETQ POSITION 0)

(SETQ TRACE-TM T)

(SETQ TIME 0)

(RUN 15)

Input => I1 State => S0 New State => S1 Output => I1 Time = 0

Movement => 1 New Position =>1 New Tape => (I1 I0 I0 I0 I1 I1 I0 I0 I0 I1 I0)

Input => I0 State => S1 New State => S0 Output => I1 Time = 1

Movement => 0 New Position =>1 New Tape => (I1 I1 I0 I0 I1 I1 I0 I0 I0 I1 I0)

Input => I1 State => S0 New State => S1 Output => I1 Time = 2

Movement => 1 New Position =>2 New Tape => (I1 I1 I0 I0 I1 I1 I0 I0 I0 I1 I0)

Input => I0 State => S1 New State => S0 Output => I1 Time = 3

Movement => 0 New Position =>2 New Tape => (I1 I1 I1 I0 I1 I1 I0 I0 I0 I1 I0)

Input => I1 State => S0 New State => S1 Output => I1 Time = 4

Movement => 1 New Position =>3 New Tape => (I1 I1 I1 I0 I1 I1 I0 I0 I0 I1 I0)

Input => I0 State => S1 New State => S0 Output => I1 Time = 5

Movement => 0 New Position =>3 New Tape => (I1 I1 I1 I1 I1 I1 I0 I0 I0 I1 I0)

Input => I1 State => S0 New State => S1 Output => I1 Time = 6

Movement => 1 New Position =>4 New Tape => (I1 I1 I1 I1 I1 I1 I0 I0 I0 I1 I0)

Input => I1 State => S1 New State => S1 Output => I1 Time = 7

Movement => 1 New Position =>5 New Tape => (I1 I1 I1 I1 I1 I1 I0 I0 I0 I1 I0)
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...

Input => I1 State => S0 New State => S1 Output => I1 Time = 12

Movement => 1 New Position =>8 New Tape => (I1 I1 I1 I1 I1 I1 I1 I1 I0 I1 I0)

Input => I0 State => S1 New State => S0 Output => I1 Time = 13

Movement => 0 New Position =>8 New Tape => (I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I0)

Input => I1 State => S0 New State => S1 Output => I1 Time = 14

Movement => 1 New Position =>9 New Tape => (I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I0)

Input => I1 State => S1 New State => S1 Output => I1 Time = 15

Movement => 1 New Position =>10 New Tape => (I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I0)

Run paused by user request

@end(programexample)

@section(Theorem 3 Simulation)

This  code  simulates  the  Turing  machine from theorem 3, in

which a finite sized MVS is demonstrated.  In this case, size (I) = 4.

@begin(programexample)

%   Theorem 3 from Fred Cohen's thesis %

% SxI N O D %

% -------------------------- %

% S0,I0 S0 0 0 %

% S0,X SX X +1 %

% SX,* SX [X|I+1]0 %

% -------------------------------------------- %

% User modified code for a given TM starts here %

% -------------------------------------------- %

% the next state function of current state and input symbol %

(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'I0)) 'S0) % S0,I0 => S0 %

((EQUAL STATE 'S0) INPUT) % S0,* => * %
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(T STATE) % not S0 => state unchanged %

)

))

% the output function of the current state and input symbol %

(DEFUN OUTPUT (LAMBDA (STATE, INPUT)

(COND ((EQUAL STATE 'S0) INPUT) % S0 => output=input %

(T (PLUS 1 (REMAINDER STATE I))) % otherwise, output=[X|I+1] %

)

))

% the tape movement function of the current state and input symbol %

(DEFUN MOVEMENT (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (NOT (EQUAL INPUT 'I0))) 1) % S0,I0 => +1 %

(T 0) % else, don't move %

)

))

% -------------------------------------------- %

% Basic structures and variables %

% -------------------------------------------- %

(SETQ TAPE '(1 0 0 0 0 0 0 0 0)) % initial tape (trailing blanks) %

(SETQ I 4) % the modulus %

(SETQ POSITION 0) % initial tape position %

(SETQ TRACE-TM T) % trace the TM activities %

(SETQ TIME 0) % initial time %

(RUN)

Input => 1 State => S0 New State => 1 Output => 1 Time = 0

Movement => 1 New Position =>1 New Tape => (1 0 0 0 0 0 0 0 0)

Input => 0 State => 1 New State => 1 Output => 2 Time = 1
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Movement => 0 New Position =>1 New Tape => (1 2 0 0 0 0 0 0 0)

Input => 2 State => 1 New State => SHALT Output => 2

Movement => 0 New Position =>1 New Tape => (1 2 0 0 0 0 0 0 0)

Machine Halted

(RUN)

Input => 2 State => S0 New State => 2 Output => 2 Time = 2

Movement => 1 New Position =>2 New Tape => (1 2 0 0 0 0 0 0 0)

Input => 0 State => 2 New State => 2 Output => 3 Time = 3

Movement => 0 New Position =>2 New Tape => (1 2 3 0 0 0 0 0 0)

Input => 3 State => 2 New State => SHALT Output => 3

Movement => 0 New Position =>2 New Tape => (1 2 3 0 0 0 0 0 0)

Machine Halted

Input => 3 State => S0 New State => 3 Output => 3 Time = 4

Movement => 1 New Position =>3 New Tape => (1 2 3 0 0 0 0 0 0)

Input => 0 State => 3 New State => 3 Output => 4 Time = 5

Movement => 0 New Position =>3 New Tape => (1 2 3 4 0 0 0 0 0)

Input => 4 State => 3 New State => SHALT Output => 4

Movement => 0 New Position =>3 New Tape => (1 2 3 4 0 0 0 0 0)

Machine Halted

(RUN)

Input => 4 State => S0 New State => 4 Output => 4 Time = 6

Movement => 1 New Position =>4 New Tape => (1 2 3 4 0 0 0 0 0)

Input => 0 State => 4 New State => 4 Output => 1 Time = 7

Movement => 0 New Position =>4 New Tape => (1 2 3 4 1 0 0 0 0)
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Input => 1 State => 4 New State => SHALT Output => 1

Movement => 0 New Position =>4 New Tape => (1 2 3 4 1 0 0 0 0)

Machine Halted

...

(RUN)

Input => 0 State => 2 New State => 2 Output => 3 Time = 11

Movement => 0 New Position =>6 New Tape => (1 2 3 4 1 2 3 0 0)

Input => 3 State => 2 New State => SHALT Output => 3

Movement => 0 New Position =>6 New Tape => (1 2 3 4 1 2 3 0 0)

Machine Halted

(RUN)

Input => 3 State => S0 New State => 3 Output => 3 Time = 12

Movement => 1 New Position =>7 New Tape => (1 2 3 4 1 2 3 0 0)

Input => 0 State => 3 New State => 3 Output => 4 Time = 13

Movement => 0 New Position =>7 New Tape => (1 2 3 4 1 2 3 4 0)

Input => 4 State => 3 New State => SHALT Output => 4

Movement => 0 New Position =>7 New Tape => (1 2 3 4 1 2 3 4 0)

Machine Halted

@end(programexample)

@section(Macros Demonstrated)

In  this  simulation, we demonstrate the Turing Machine macros

defined to simplify the writing of FSM tables.  In this demonstration,

we show  that  the  macros  "HALT",  "R(x)",  "L(x)",  and  "C(x,y,z)"

actually  implement  the functions claimed for them in the body of the

thesis.  The demonstration is a simple program which moves right  till

a  given  symbol,  changes  occurrences of one symbol to another till a

given symbol, moves left to a given symbol, and then halts.
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@begin(programexample)

% ------------------------------------- %

%   TM macros from Fred Cohen's Thesis %

% %

% SxI N O D %

% -------------------------- %

% HALT Sn,* Sn * 0 %

% %

% R(x) Sn,x Sn+1 x 0 %

% Sn,else Sn else +1 %

% %

% L(x)Sn,x Sn+1 x 0 %

% Sn,else Sn else -1 %

% %

% C(x,y,z) %

% Sn,z Sn+1 z 0 %

% Sn,x Sn y +1 %

% Sn,else Sn else +1 %

% %

% ------------------------------------- %

% ------------------------------------- %

% exemplified by the following machine  %

% move right till "I5", %

% change all "I6"s to "I7"s till "I8", %

% move left till "I4", and then halt %

% ------------------------------------- %

% the next state function of current state and input symbol %

(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT)

(COND ((EQUAL STATE 'HSTATE) 'HSTATE) % HALT macro %

((AND (EQUAL STATE 'RSTATE) (EQUAL INPUT RX)) RNSTATE)
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((EQUAL STATE 'RSTATE) 'RSTATE) % R macro %

((AND (EQUAL STATE 'LSTATE) (EQUAL INPUT LX)) LNSTATE)

((EQUAL STATE 'LSTATE) 'LSTATE) % L macro %

((AND (EQUAL STATE 'CSTATE) (EQUAL INPUT CZ)) CNSTATE)

((EQUAL STATE 'CSTATE) 'CSTATE) % C macro %

((EQUAL STATE 'S0) 'RSTATE)

(T 'S0)

)

))

% the output function of the current state and input symbol %

(DEFUN OUTPUT (LAMBDA (STATE, INPUT)

(COND ((EQUAL STATE 'HSTATE) INPUT) % HALT macro %

((EQUAL STATE 'RSTATE) INPUT) % R macro %

((EQUAL STATE 'LSTATE) INPUT) % L macro %

((AND (EQUAL STATE 'CSTATE) (EQUAL INPUT CZ)) CZ)

((AND (EQUAL STATE 'CSTATE) (EQUAL INPUT CX)) CY)

((EQUAL STATE 'CSTATE) INPUT) % C macro %

(T INPUT)

)

))

% the tape movement function of the current state and input symbol %

(DEFUN MOVEMENT (LAMBDA (STATE, INPUT)

(COND ((EQUAL STATE 'HSTATE) 0) % HALT macro %

((AND (EQUAL STATE 'RSTATE) (EQUAL INPUT RX)) 0)

((EQUAL STATE 'RSTATE) 1) % R macro %

((AND (EQUAL STATE 'LSTATE) (EQUAL INPUT LX)) 0)

((EQUAL STATE 'LSTATE) -1) % L macro %

((AND (EQUAL STATE 'CSTATE) (EQUAL INPUT CZ)) 0)

((EQUAL STATE 'CSTATE) 1) % C macro %

(T 0)

)
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))

% -------------------------------------------- %

% Basic structures and variables %

% -------------------------------------------- %

(SETQ RX 'I5) % right till I5 %

(SETQ RNSTATE 'CSTATE) % then to CSTATE %

(SETQ CX 'I6) % change I6 %

(SETQ CY 'I7) % to I7 %

(SETQ CZ 'I8) % till I8 %

(SETQ CNSTATE 'LSTATE) % then to LSTATE %

(SETQ LX 'I4) % left till I4 %

(SETQ LNSTATE 'HSTATE) % then to HSTATE %

(SETQ TAPE '(I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6))

(SETQ STATE 'S0)

(SETQ POSITION 0)

(SETQ TRACE-TM T)

(SETQ TIME 0)

(RUN)

Input => I0 State => S0 New State => RSTATE Output => I0 Time = 0

Movement => 0 New Position =>0 New Tape => (I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6)

Input => I0 State => RSTATE New State => RSTATE Output => I0 Time = 1

Movement => 1 New Position =>1 New Tape => (I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6)

...

Input => I1 State => RSTATE New State => RSTATE Output => I1 Time = 4

Movement => 1 New Position =>4 New Tape => (I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6)

Input => I5 State => RSTATE New State => CSTATE Output => I5 Time = 5

Movement => 0 New Position =>4 New Tape => (I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6)
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Input => I5 State => CSTATE New State => CSTATE Output => I5 Time = 6

Movement => 1 New Position =>5 New Tape => (I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6)

Input => I0 State => CSTATE New State => CSTATE Output => I0 Time = 7

Movement => 1 New Position =>6 New Tape => (I0 I4 I6 I1 I5 I0 I6 I0 I6 I8 I6)

Input => I6 State => CSTATE New State => CSTATE Output => I7 Time = 8

Movement => 1 New Position =>7 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I6 I8 I6)

Input => I0 State => CSTATE New State => CSTATE Output => I0 Time = 9

Movement => 1 New Position =>8 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I6 I8 I6)

Input => I6 State => CSTATE New State => CSTATE Output => I7 Time = 10

Movement => 1 New Position =>9 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I7 I8 I6)

Input => I8 State => CSTATE New State => LSTATE Output => I8 Time = 11

Movement => 0 New Position =>9 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I7 I8 I6)

...

Input => I6 State => LSTATE New State => LSTATE Output => I6 Time = 19

Movement => -1 New Position =>1 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I7 I8 I6)

Input => I4 State => LSTATE New State => HSTATE Output => I4 Time = 20

Movement => 0 New Position =>1 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I7 I8 I6)

Input => I4 State => HSTATE New State => SHALT Output => I4

Movement => 0 New Position =>1 New Tape => (I0 I4 I6 I1 I5 I0 I7 I0 I7 I8 I6)

Machine Halted

@end(programexample)

@section(Countably Infinite Viral Set)

This  simulation  demonstrates a virus which replicates itself

with the addition of one symbol.  This  demonstration  takes  a  virus
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with three Os in it, and produces a virus with 4 Os in it.

@begin(programexample)

% Countably infinite viral set from Fred Cohen's thesis %

% SxI N O D %

% -------------------------- %

% S0,L S1 L +1 %

% S0,ELSE S0 ELSE 0 %

% S1,O CHANGE O TO X TILL R %

% S2,R S3 R +1 %

% S3 S4 L +1 %

% S4 S5 X 0 %

% S5 L(R) %

% S6 L(X OR L) %

% S7,L S11 L 0 %

% S7,X S8 O +1 %

% S8 R(X) %

% S9,X S10 O +1 %

% S10 S5 X 0 %

% S11 R(X) %

% S12 S13 O +1 %

% S13 S13 R 0 %

% -------------------------------------------- %

% User modified code for a given TM starts here %

% -------------------------------------------- %

% the next state function of current state and input symbol %

(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'L)) 'S1)

((EQUAL STATE 'S0) 'S0)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'R)) 'S2)

((EQUAL STATE 'S1) 'S1)

((EQUAL STATE 'S2) 'S3)
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((EQUAL STATE 'S3) 'S4)

((EQUAL STATE 'S4) 'S5)

((AND (EQUAL STATE 'S5) (EQUAL INPUT 'R)) 'S6)

((EQUAL STATE 'S5) 'S5)

((AND (EQUAL STATE 'S6) (EQUAL INPUT 'X)) 'S7)

((AND (EQUAL STATE 'S6) (EQUAL INPUT 'L)) 'S7)

((EQUAL STATE 'S6) 'S6)

((AND (EQUAL STATE 'S7) (EQUAL INPUT 'L)) 'S11)

((AND (EQUAL STATE 'S7) (EQUAL INPUT 'X)) 'S8)

((AND (EQUAL STATE 'S8) (EQUAL INPUT 'X)) 'S9)

((EQUAL STATE 'S8) 'S8)

((EQUAL STATE 'S9) 'S10)

((EQUAL STATE 'S10) 'S5)

((AND (EQUAL STATE 'S11) (EQUAL INPUT 'X)) 'S12)

((EQUAL STATE 'S11) 'S11)

((EQUAL STATE 'S12) 'S13)

((EQUAL STATE 'S13) 'S13)

(T STATE) % not S0 => state unchanged %

)

))

% the output function of the current state and input symbol %

(DEFUN OUTPUT (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'L)) 'L)

((EQUAL STATE 'S0) INPUT)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'O)) 'X)

((EQUAL STATE 'S1) INPUT)

((EQUAL STATE 'S2) 'R)

((EQUAL STATE 'S3) 'L)

((EQUAL STATE 'S4) 'X)

((EQUAL STATE 'S5) INPUT)

((EQUAL STATE 'S6) INPUT)

((AND (EQUAL STATE 'S7) (EQUAL INPUT 'L)) 'L)
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((AND (EQUAL STATE 'S7) (EQUAL INPUT 'X)) 'O)

((EQUAL STATE 'S8) INPUT)

((EQUAL STATE 'S9) 'O)

((EQUAL STATE 'S10) 'X)

((EQUAL STATE 'S11) INPUT)

((EQUAL STATE 'S12) 'O)

((EQUAL STATE 'S13) 'R)

)

))

% the tape movement function of the current state and input symbol %

(DEFUN MOVEMENT (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 'L)) 1)

((EQUAL STATE 'S0) 0)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'R)) 0)

((EQUAL STATE 'S1) 1)

((EQUAL STATE 'S2) 1)

((EQUAL STATE 'S3) 1)

((EQUAL STATE 'S4) 0)

((AND (EQUAL STATE 'S5) (EQUAL INPUT 'R)) 0)

((EQUAL STATE 'S5) -1)

((AND (EQUAL STATE 'S6) (EQUAL INPUT 'X)) 0)

((AND (EQUAL STATE 'S6) (EQUAL INPUT 'L)) 0)

((EQUAL STATE 'S6) -1)

((AND (EQUAL STATE 'S7) (EQUAL INPUT 'X)) 1)

((AND (EQUAL STATE 'S7) (EQUAL INPUT 'L)) 0)

((EQUAL STATE 'S7) 0)

((AND (EQUAL STATE 'S8) (EQUAL INPUT 'X)) 0)

((EQUAL STATE 'S8) 1)

((EQUAL STATE 'S9) 1)

((EQUAL STATE 'S10) 0)

((AND (EQUAL STATE 'S11) (EQUAL INPUT 'X)) 0)

((EQUAL STATE 'S11) 1)
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((EQUAL STATE 'S12) 1)

((EQUAL STATE 'S13) 0)

(T 0) % else, don't move %

)

))

% -------------------------------------------- %

% Basic structures and variables %

% -------------------------------------------- %

(SETQ TAPE '(L O O O R)) % initial tape (trailing blanks) %

(SETQ I 7) % the modulus %

(SETQ POSITION 0) % initial tape position %

(SETQ TRACE-TM T) % trace the TM activities %

(SETQ TIME 0) % initial time %

(RUN)

Input => L State => S0 New State => S1 Output => L

Movement => 1 New Position =>1 New Tape => (L O O O R)

Input => O State => S1 New State => S1 Output => X

Movement => 1 New Position =>2 New Tape => (L X O O R)

Input => O State => S1 New State => S1 Output => X

Movement => 1 New Position =>3 New Tape => (L X X O R)

Input => O State => S1 New State => S1 Output => X

Movement => 1 New Position =>4 New Tape => (L X X X R)

Time = 3

...

Input => NIL State => S3 New State => S4 Output => L

Movement => 1 New Position =>6 New Tape => (L X X X R L)

Time = 6
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Input => NIL State => S4 New State => S5 Output => X

Movement => 0 New Position =>6 New Tape => (L X X X R L X)

Time = 7

...

Input => X State => S6 New State => S7 Output => X

Movement => 0 New Position =>3 New Tape => (L X X X R L X)

Time = 12

Input => X State => S7 New State => S8 Output => O

Movement => 1 New Position =>4 New Tape => (L X X O R L X)

Time = 13

...

Input => X State => S9 New State => S10 Output => O

Movement => 1 New Position =>7 New Tape => (L X X O R L O)

Time = 17

Input => NIL State => S10 New State => S5 Output => X

Movement => 0 New Position =>7 New Tape => (L X X O R L O X)

Time = 18

...

Input => X State => S7 New State => S8 Output => O

Movement => 1 New Position =>3 New Tape => (L X O O R L O X)

Time = 26

...

Input => X State => S9 New State => S10 Output => O

Movement => 1 New Position =>8 New Tape => (L X O O R L O O)

Time = 32

Input => NIL State => S10 New State => S5 Output => X

Movement => 0 New Position =>8 New Tape => (L X O O R L O O X)

Time = 33

...
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Input => X State => S7 New State => S8 Output => O

Movement => 1 New Position =>2 New Tape => (L O O O R L O O X)

Time = 43

Input => X State => S9 New State => S10 Output => O

Movement => 1 New Position =>9 New Tape => (L O O O R L O O O)

Time = 51

Input => NIL State => S10 New State => S5 Output => X

Movement => 0 New Position =>9 New Tape => (L O O O R L O O O X)

Time = 52

...

Input => L State => S7 New State => S11 Output => L

Movement => 0 New Position =>0 New Tape => (L O O O R L O O O X)

Time = 64

Input => L State => S11 New State => S11 Output => L

Movement => 1 New Position =>1 New Tape => (L O O O R L O O O X)

Time = 65

...

Input => X State => S12 New State => S13 Output => O

Movement => 1 New Position =>10 New Tape => (L O O O R L O O O O)

Time = 75

Input => NIL State => S13 New State => S13 Output => R

Movement => 0 New Position =>10 New Tape => (L O O O R L O O O O R)

Time = 76

Input => R State => S13 New State => SHALT Output => R

Movement => 0 New Position =>10 New Tape => (L O O O R L O O O O R)

Machine Halted

@end(programexample)
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@section(Recognize/Generate Simulation)

This example demonstrates the recognize/generate machines from

Theorem 5 and subsequent examples.

@begin(programexample)

% Recognize/Generate machine from Fred Cohen's thesis %

% SxI N O D %

% -------------------------- %

% S0,t S1 t +1 %

% S0,ELSE S7 ELSE 0 %

% S1,e S2 e +1 %

% S1,ELSE S6 ELSE -1 %

% S2,s S3 s +1 %

% S2,ELSE S5 ELSE -1 %

% S3,t S8 t +1 %

% S3,ELSE S4 ELSE -1 %

% S4,* S5 * -1 %

% S5,* S6 * -1 %

% S6,* S7 * -1 %

% S7 didn't recognize state %

% S8 did recognize state %

% S8,* S9 O +1 %

% S9,* S10 K +0 %

% S10,* S10 * 0 %

% -------------------------------------------- %

% User modified code for a given TM starts here %

% -------------------------------------------- %

% the next state function of current state and input symbol %

(DEFUN NEXT-STATE (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 't)) 'S1)

((EQUAL STATE 'S0) 'S7)
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((AND (EQUAL STATE 'S1) (EQUAL INPUT 'e)) 'S2)

((EQUAL STATE 'S1) 'S6)

((AND (EQUAL STATE 'S2) (EQUAL INPUT 's)) 'S3)

((EQUAL STATE 'S2) 'S5)

((AND (EQUAL STATE 'S3) (EQUAL INPUT 't)) 'S8)

((EQUAL STATE 'S3) 'S4)

((EQUAL STATE 'S4) 'S5)

((EQUAL STATE 'S5) 'S6)

((EQUAL STATE 'S6) 'S7)

((EQUAL STATE 'S7) 'S7)

((EQUAL STATE 'S8) 'S9)

((EQUAL STATE 'S9) 'S10)

((EQUAL STATE 'S10) 'S10)

(T STATE) % not S0 => state unchanged %

)

))

% the output function of the current state and input symbol %

(DEFUN OUTPUT (LAMBDA (STATE, INPUT)

(COND ((EQUAL STATE 'S0) INPUT)

((EQUAL STATE 'S1) INPUT)

((EQUAL STATE 'S2) INPUT)

((EQUAL STATE 'S3) INPUT)

((EQUAL STATE 'S4) INPUT)

((EQUAL STATE 'S5) INPUT)

((EQUAL STATE 'S6) INPUT)

((EQUAL STATE 'S7) INPUT)

((EQUAL STATE 'S8) 'O)

((EQUAL STATE 'S9) 'K)

((EQUAL STATE 'S10) INPUT)

)

))
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% the tape movement function of the current state and input symbol %

(DEFUN MOVEMENT (LAMBDA (STATE, INPUT)

(COND ((AND (EQUAL STATE 'S0) (EQUAL INPUT 't)) 1)

((EQUAL STATE 'S0) 0)

((AND (EQUAL STATE 'S1) (EQUAL INPUT 'e)) 1)

((EQUAL STATE 'S1) -1)

((AND (EQUAL STATE 'S2) (EQUAL INPUT 's)) 1)

((EQUAL STATE 'S2) -1)

((AND (EQUAL STATE 'S3) (EQUAL INPUT 't)) 1)

((EQUAL STATE 'S3) -1)

((EQUAL STATE 'S4) -1)

((EQUAL STATE 'S5) -1)

((EQUAL STATE 'S6) -1)

((EQUAL STATE 'S7) 0)

((EQUAL STATE 'S8) 1)

((EQUAL STATE 'S9) 0)

((EQUAL STATE 'S10) 0)

(T 0) % else, don't move %

)

))

% -------------------------------------------- %

% Basic structures and variables %

% -------------------------------------------- %

(SETQ TAPE '(t e s t)) % initial tape %

(SETQ I 7) % the modulus %

(SETQ POSITION 0) % initial tape position %

(SETQ TRACE-TM T) % trace the TM activities %

(SETQ TIME 0) % initial time %

(RUN)

Input => t State => S0 New State => S1 Output => t Time = 0
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Movement => 1 New Position =>1 New Tape => (t e s t)

Input => e State => S1 New State => S2 Output => e Time = 1

Movement => 1 New Position =>2 New Tape => (t e s t)

Input => s State => S2 New State => S3 Output => s Time = 2

Movement => 1 New Position =>3 New Tape => (t e s t)

Input => t State => S3 New State => S8 Output => t Time = 3

Movement => 1 New Position =>4 New Tape => (t e s t)

Input => NIL State => S8 New State => S9 Output => O Time = 4

Movement => 1 New Position =>5 New Tape => (t e s t O)

Input => NIL State => S9 New State => S10 Output => K Time = 5

Movement => 0 New Position =>5 New Tape => (t e s t O K)

Input => K State => S10 New State => SHALT Output => K

Movement => 0 New Position =>5 New Tape => (t e s t O K)

Machine Halted

(RUN)

Input => t State => S0 New State => S1 Output => t Time = 0

Movement => 1 New Position =>1 New Tape => (t e a s e r)

Input => e State => S1 New State => S2 Output => e Time = 1

Movement => 1 New Position =>2 New Tape => (t e a s e r)

Input => a State => S2 New State => S5 Output => a Time = 2

Movement => -1 New Position =>1 New Tape => (t e a s e r)

Input => e State => S5 New State => S6 Output => e Time = 3

Movement => -1 New Position =>0 New Tape => (t e a s e r)
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Input => t State => S6 New State => S7 Output => t Time = 4

Movement => -1 New Position =>0 New Tape => (t e a s e r)

Input => t State => S7 New State => SHALT Output => t

Movement => 0 New Position =>0 New Tape => (t e a s e r)

Machine Halted

@end(programexample)

A PC DOS2.1 Virus

The  following  batch  command  file implements a virus almost entirely in  the  command 
language  of  IBM-PC  DOS2.1.   The  single exception  to  this is the use of the program 
DOMANY.C which tests for the existence of  the  file  done,  and  does  each  of   the 
commands following  it  only if done exists.  This could be implemented without the domany 
program  but  the  resulting  command  language  program  would  be  intolerably  slow  for 
demonstration purposes,  and  clarity  would  be lost.   We  have also reformatted the text for  
readability, and placed no more than one command per line except in the case of "domany". 
In  this  form,  the  program  takes  14  lines,  but  by  removing  the  lines  which  are   for  
demonstration  purposes  only  (e.g.   echo  Nothing left to infect) and merging mergable 
lines, we could  reduce  its  size  to  6 lines.   Following  the command file is the text of the 
DOMANY program as written in the language "C".

@center(the virus)

@begin(programexample)

echo off

echo This program (%0) is infected

for %%i in (*.bat) do

domany ^done ^/z/%%i copy^%%i^done

 copy^%%i^/z/%%i

copy^%0.bat^%%i >> /tmp/log

if exist done goto part2

echo Nothing left to infect

goto done

:part2

del done

:done

copy /z/%0.bat /tmp/tmp.bat > /tmp/log
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tmp %1 %2 %3 %4 %5 %6 %7 %8 %9

@end(programexample)

@center(domany.c)

@begin(programexample)

#include "/c/stdio.h"

int sfix(s1) char *s1;

{int i; for (i=0;s1[i]!='\0';i++) if (s1[i]=='^') s1[i]=' '; return(0);}

int scheck(s1) char *s1;

{int i; if (s1[0]=='^') /*if no such file, go on*/

{i=open(&(s1[1]),0); if (i < 0) return(-1); close(i); exit(0);}

if (s1[0]=='?') /*if is such file, go on*/

{i=open(&(s1[1]),0); if (i >= 0) {close(i);return(-1);} exit(0);}

return(0);}

main(argc,argv) int argc; char **argv;

{int i; argv++; for (i=0;i<argc;i++)

  if (scheck(*argv) == 0) {sfix(*argv); system(*argv++);} else argv++;}

@end(programexample)

Instrumentation Analysis Programs

There  are  three  basic  measurements done by the measurement programs  at  this  time. 
They  are  called  social,  spreader,  and detailed.

"Social"  is  set  up  to  find how social users are with each other.  It basically lists the number 
of  times  each  user  has  used another  users  programs,  and the number of times their  
programs have been used by other  users.   You  would  expect  that  the  root,  for example,  
would  be  used  by many, but use others programs rarely (if ever)!  This is intended  to  help  
find  social  users,  and  perhaps identify weak points against viral infection.  By isolating the 
social users  so that they cannot easily get infected, or by making them more aware and 
providing more checks for them, one might be able to slow  a virus.

"Spreader"   is a program made to measure the overall  spreading of a virus,  assuming it  
started at a given user.  This is basically  a summary  of  the  detailed  analysis  in that it tells 
how far a virus would have gotten, and how much time it would have taken to get  there if  it 
had  started  at each of the users in the system.  It is to be expected that socialites would  
have lower  times  and  larger  spreads than isolationists.

"Detailed"  provides  the exact details of the first infection of each user given a particular viral  
starting point.  This lists each user that could have gotten  infected,  and  the  time  at  which  
the infection would have happened for each user in the system.
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@begin(programexample)

/* This program is used to generate sample data to verify that  the

analysis programs operate correctly */

main()

{long int buf[2];

int i,f;

printf("%d",sizeof(buf));

f = creat("testin",0600);

for (i = 1;i < 500;i++)

{buf[0] = ((29*i)+13) % 64;

buf[1] = ((21*i)+7) % 32;

buf[2] = i;

write(f,&(buf[0]),12);

}

close(f);

exit(1);

}

@end(programexample)

@begin(programexample)

/* Copyright(c) Fred Cohen 1984*/

/* show.c - show fred what goes*/

getinfo()

{int f,tim,ouid,nuid,i;

long int buf[2];

if ((f = open("testin",0)) < 0) exit(-1);

while(12 == read(f,&(buf[0]),12))

{printf("%d\t%d\t%d\n",buf[0],buf[1],buf[2]);

}

}

main()
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{getinfo();

exit(1);

}

@end(programexample)

@begin(programexample)

/* Copyright(c) Fred Cohen 1984*/

/* spread.c - sharing paths from each user vs. time*/

/* social - how social are users*/

int uses[256],used[256],totals,dt;

/* I used them, they used me, totals, delta time*/

int user[256],fulltime[256],howbad[256];

getsoci()

{int f,oldtime,time,ouid,nuid;

long int buf[2];

if ((f = open("testin",0)) < 0) exit(-1);

dt = 0;

read(f,&(buf[0]),12);oldtime = buf[2];

while(12 == read(f,&(buf[0]),12))

{nuid=buf[0];ouid=buf[1];time = buf[2];

used[ouid] += 1;

uses[nuid] += 1;

totals += 1;

}

dt = time - oldtime;

return(1);

}

showsoci()

{float ratio;

int i;

printf("data summary\ntotal sharings = %d\n",totals);
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printf("total time = %d\n",dt);

ratio = totals/dt;

printf("sharing/time = %f\n",ratio);

printf("broken down by uses:\n");

printf("user\tuses\tused\n");

for (i = 0;i < 256;i++)

{if ((uses[i] != 0) || (used[i] != 0))

printf("%d\t%d\t%d\n",i,uses[i],used[i]);

}

return(0);

}

getinfo(uid)

int uid;

{int f,oldtim,tim,ouid,nuid,i;

long int buf[2];

if ((f = open("testin",0)) < 0) exit(-1);

for (i = 0;i<256;i++) user[i] = 0;

read(f,&(buf[0]),12);oldtim = buf[2];

user[uid] = 1;

while(12 == read(f,&(buf[0]),12))

{nuid=buf[0];ouid=buf[1];tim = buf[2];

if ((user[ouid] != 0) && (user[nuid] == 0))

{user[nuid] = (tim - oldtim)+1;

fulltime[uid] = (tim-oldtim)+1;

howbad[uid] += 1;}

}

printf("user %d spread time to %d users = %d\n",uid,howbad[uid],fulltime[uid]);

close(f);

return(1);

}

showinfo(uid)
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int uid;

{float ratio;

int i;

if (fulltime[uid] == 1) return(0);

printf("user %d spreading summary:\n",uid);

printf("user\ttim\n");

for (i = 0;i < 256;i++)

{if (user[i] != 0)

printf("%d\t%d\n",i,user[i]);

}

return(0);

}

main(argc,argv)

int argc;

char *argv[];

{int i;

if (argc > 1) {getsoci();showsoci();}

for (i = 0;i < 256;i++)

{getinfo(i);

if (argc > 2) showinfo(i);

}

exit(1);

}

@end(programexample)

We  now present the results of instrumentation analysis as measured in two actual systems. 
The first example shows first  the  ".out"  file, and  then,  the ".sum" file, while the second only  
includes the ".sum" file due to the large size of the corresponding ".out" file.

The output is a bit cryptic at first.  The "inc" indicates the initiation of the experiment at some 
number  of  system clock ticks  from some  arbitrary  date,  and is  simply subtracted from 
absolute times to produce the results herein.  The analysis takes some time, and  prints out 
messages to the user like "read in" to indicate that it is active. The  total  sharings  indicates  
the number of times users ran programs belonging to other users, the total time is  in  "clock  
ticks"  which correspond  to  milliseconds,  and  the sharings per time indicate the frequency 
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with which sharing takes place.  The figure  indicates  that information  is  shared  between 
users  about every 50 msec.  This is misleading  because  user  "0"  is  the  system  itself, 
and  it   is responsible for 65% of the cases of other users using its programs.

The  categories  indicated  in the per user breakdown show the user number (user),  the 
number of times that user  used  other  users' programs (uses), the number of times that 
user's programs were used by other  users (used), and the first time at which the user used 
another user's program is indicated by the "firstuse" heading.

We  note  especially  that because of the separation of duties between various users on this  
system, the superuser had to  use  other users programs quite often, and that this is likely to 
result in rapid takeover  of  the  entire system.  In this case, a measure intended to maintain 
security  via  separation  of  duties   actually   compromises   the  system security  by  forcing 
increased sharing and thus more rapid viral attack.

We  also  note  that negative numbers indicate activities that occurred before the system's 
clock  was  set  at  system  startup,  and should  be  disregarded  in  statistics  (although  they  
are important because they do indicate sharing in the initialization of  the  system that could  
cause viral takeover.

The "takeover time" and "spread to" indications show how far a best  case  viral  attack by a 
given  user  using  only  the  measured  data  paths  could  do.   Note  that  many  users  could 
takeover the  system  very quickly  after  their  first  program is run by another user, and that 
some takeover times are quite long (over an hour).  Many  users  don't take over at all, and 
many more users never used the system.

@begin(programexample)

@center(.OUT FILE)

inc = 11591  - data read in  - data summary - total sharings = 11591

total time = 541091 - sharing/time = 0.021422 - broken down by uses:

user uses used firstuse user uses used firstuse

0 2699 7549 7 3 2033 2725 14105

4 1489 0 2247 6 50 0 118974

8 600 1 2388 10 12 0 5286

19 186 0 18550 25 1082 1 2677

32 86 0 455651 33 805 0 3220

39 30 1 6289 40 653 0 3250

41 208 0 195819 48 112 0 83102

54 39 0 455832 103 16 0 2335

112 14 7 3173 135 527 1 3187

139 686 0 4840 206 1 0 25050

222 26 1306 92337 226 1 0 456436

392 236 0 460901
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user 0 spread to 22 users in t = 460902  dt=458652

user 0 spreading summary:

user tim rel best user tim rel best

0 1 -2249 -6 3 14106 11856 1

4 2250 0 3 6 118975 116725 1

8 2389 139 1 10 5287 3037 1

19 18551 16301 1 25 3154 904 477

32 455652 453402 1 33 8259 6009 5039

39 437464 435214 431175 40 4722 2472 1472

41 195820 193570 1 48 83103 80853 1

54 455833 453583 1 103 2336 86 1

112 120511 118261 117338 135 4579 2329 1392

139 4844 2594 4 206 25051 22801 1

222 92338 90088 1 226 456437 454187 1

392 460902 458652 1

user 3 takeover at 1rel=0

user 3 spread to 22 users in t = 460902  dt=460901

user 3 spreading summary:

user tim rel best user tim rel best

0 1 0 -6 3 1 0 -14104

4 2248 2247 1 6 118975 118974 1

8 2389 2388 1 10 5287 5286 1

19 18551 18550 1 25 3150 3149 473

32 455652 455651 1 33 8256 8255 5036

39 6290 6289 1 40 4722 4721 1472

41 195820 195819 1 48 83103 83102 1

54 455833 455832 1 103 2336 2335 1

112 120511 120510 117338 135 4579 4578 1392

139 4841 4840 1 206 25051 25050 1

222 92338 92337 1 226 456437 456436 1

392 460902 460901 1

user 8 spread to 1 users in t = 184432  dt=0

user 8 spreading summary:
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user tim rel best

8 1 -184431 -2387

135 184432 0 181245

user 25 spread to 1 users in t = 447539  dt=0

user 25 spreading summary:

user tim rel best

25 1 -447538 -2676

40 447539 0 444289

user 39 takeover at 455457 rel=9229

user 39 spread to 15 users in t = 536364  dt=80907

user 39 spreading summary:

user tim rel best user tim rel best

0 455457 0 455450 3 456159 702 442054

4 458247 2790 456000 8 457229 1772 454841

19 536364 80907 517814 25 513074 57617 510397

32 455652 195 1 33 455789 332 452569

39 1 -455456 -6288 41 456335 878 260516

48 455743 286 372641 54 455833 376 1

103 460400 4943 458065 139 513290 57833 508450

226 456437 980 1 392 460902 5445 1

user 112 spread to 2 users in t = 8156  dt=567

user 112 spreading summary:

user tim rel best

8 7589 0 5201

112 1 -7588 -3172

135 8156 567 4969

user 135 spread to 1 users in t = 5344  dt=0

user 135 spreading summary:

user tim rel best

10 5344 0 58

135 1 -5343 -3186

user 222 takeover at 2677 rel=53

user 222 spread to 22 users in t = 460902  dt=458225
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user 222 spreading summary:

user tim rel best user tim rel best

0 2677 0 2670 3 14106 11429 1

4 3235 558 988 6 118975 116298 1

8 3202 525 814 10 5287 2610 1

19 18551 15874 1 25 2678 1 1

32 455652 452975 1 33 3221 544 1

39 437464 434787 431175 40 3251 574 1

41 195820 193143 1 48 83103 80426 1

54 455833 453156 1 103 13762 11085 11427

112 3174 497 1 135 3188 511 1

139 4844 2167 4 206 25051 22374 1

222 1 -2676 -92336 226 456437 453760 1

392 460902 458225 1

@end(programexample)

@begin(programexample)

@center(.SUM FILE)

inc = 11591 - data read in - data summary - total sharings = 11591

total time = 541091 - sharing/time = 0.021422 - broken down by uses:

user uses used firstuse user uses used firstuse

0 2699 7549 7 3 2033 2725 14105

4 1489 0 2247 6 50 0 118974

8 600 1 2388 10 12 0 5286

19 186 0 18550 25 1082 1 2677

32 86 0 455651 33 805 0 3220

39 30 1 6289 40 653 0 3250

41 208 0 195819 48 112 0 83102

54 39 0 455832 103 16 0 2335

112 14 7 3173 135 527 1 3187

139 686 0 4840 206 1 0 25050

222 26 1306 92337 226 1 0 456436

392 236 0 460901
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user 0 spread to 22 users in t = 460902  dt=458652

user 3 takeover at 1rel=0

user 3 spread to 22 users in t = 460902  dt=460901

user 8 spread to 1 users in t = 184432  dt=0

user 25 spread to 1 users in t = 447539  dt=0

user 39 takeover at 455457 rel=9229

user 39 spread to 15 users in t = 536364  dt=80907

user 112 spread to 2 users in t = 8156  dt=567

user 135 spread to 1 users in t = 5344  dt=0

user 222 takeover at 2677 rel=53

user 222 spread to 22 users in t = 460902  dt=458225

@end(programexample)

@begin(programexample)

@center(ANOTHER .SUM FILE)

inc = 44556 - data read in - data summary - total sharings = 44556

total time = 283789 - sharing/time = 0.157004 - broken down by uses:

user uses used firstuse user uses used firstuse

0 13459 12403 2 3 53 26335 192758

4 377 0 527 5 44 23 5325

6 944 144 1252 7 156 0 2173

8 15 3 200472 9 1560 0 6100

10 5 0 100336 11 4 0 181052

14 839 1 172641 15 3 0 181817

16 82 0 803 17 81 0 175313

19 646 0 93010 23 358 0 8960

24 56 0 50580 25 17 0 201225

27 79 11 990 28 56 0 19880

29 121 0 10106 30 16 0 203108

32 596 2 179772 33 640 64 95266

...

43 609 0 2822 45 8 2053 36339

...
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52 2 0 188599 54 7 5 188564

...

68 1 0 187585 72 8 2 40888

...

103 24 0 39348 112 0 1 0

...

138 1 0 74870 139 564 23 50578

...

176 46 1 69538 177 58 0 132216

...

222 7 2132 52194 224 25 0 175138

227 44 0 50575 233 124 0 175407

235 106 3 993 240 27 0 267250

...

305 584 0 173109 312 10 1349 4238

...

340 13 0 271548 345 8 1 40892

user 0 spread to 160 users in t = 283062  dt=282534

user 3 takeover at 1rel=0

user 3 spread to 161 users in t = 283062  dt=283061

user 5 takeover at 8rel=9

user 5 spread to 160 users in t = 283062  dt=283054

user 6 takeover at 169614 rel=20632

user 6 spread to 152 users in t = 283062  dt=258774

user 8 spread to 1 users in t = 204615  dt=0

user 14 spread to 1 users in t = 276624  dt=0

user 27 spread to 2 users in t = 186375  dt=7621

user 32 spread to 1 users in t = 179406  dt=0

user 33 takeover at 268035 rel=39755

user 33 spread to 78 users in t = 283169  dt=263245

user 45 takeover at 5 rel=6

user 45 spread to 160 users in t = 283062  dt=283057

user 54 spread to 8 users in t = 280918  dt=12758
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user 72 spread to 1 users in t = 198123  dt=0

user 112 spread to 1 users in t = 192445  dt=0

user 139 takeover at 125168 rel=16933

user 139 spread to 154 users in t = 283062  dt=157894

user 176 spread to 1 users in t = 169722  dt=0

user 222 takeover at 897 rel=69

user 222 spread to 160 users in t = 283062  dt=282165

user 235 spread to 3 users in t = 273561  dt=154561

user 312 takeover at 1572 rel=128

user 312 spread to 160 users in t = 283062  dt=281490

user 345 takeover at 316 rel=25

user 345 spread to 160 users in t = 283062  dt=282746

@end(programexample)

A  further  experiment  was planned wherein a program would be introduced to the system via  
the bulletin board, and its uses traced to indicate the spread of a nonviral program introduced 
to   the  users  in  this  way.   Unfortunately,  one  of  the  administrative  users  who  was  not  
supposed to know of the experiment violated the privacy of the account  used to store the 
sources of the trace program, detected that the writer of the program was the author (via the 
copyright  notice), and  warned  all  users  not  to use the program because of its author,  
without checking the program to find that it was not in fact a  threat to the system, but rather  
just a program that performed as advertised. Although   this  administrator  probably  did  the 
"safe"  thing,  he certainly  violated  the  privacy  of  the  author,  invalidated   the experiment, 
and  along with a lack of time, prevented the  experiment from yielding any useful results.

The  author   regrets   the  tendency of  users  of  every  system he ever  uses to  shun his  
programs, simply because of his  reputation  for being able to take over systems.  Woe be, to 
the bearer of bad news!
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