

C O M P U T E R S E C U R I T Y

Recommendation for Pair-Wise
Key Establishment Schemes
Using Discrete Logarithm
Cryptography

Elaine Barker, Don Johnson, and Miles Smid

NIST Special Publication 800-56

July 2005

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 2

Abstract

This Recommendation specifies key establishment schemes using discrete logarithm
cryptography, based on standards developed by the Accredited Standards Committee (ASC) X9,
Inc.: ANS X9.42 (Agreement of Symmetric Keys Using Discrete Logarithm Cryptography) and
ANS X9.63 (Key Agreement and Key Transport Using Elliptic Curve Cryptography). Worked
examples are provided in Appendix D.

KEY WORDS: assurances; Diffie-Hellman; elliptic curve cryptography; finite field
cryptography; key agreement; key confirmation; key derivation; key establishment; key
management; MQV.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 3

Acknowledgements

The National Institute of Standards and Technology (NIST) gratefully acknowledges and
appreciates contributions by Rich Davis, Mike Hopper and Laurie Law from the National
Security Agency concerning the many security issues associated with this Recommendation.
NIST also thanks the many contributions by the public and private sectors whose thoughtful and
constructive comments improved the quality and usefulness of this publication.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 4

Authority

This document has been developed by the National Institute of Standards and Technology
(NIST) in furtherance of its statutory responsibilities under the Federal Information Security
Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum requirements,
for providing adequate information security for all agency operations and assets, but such
standards and guidelines shall not apply to national security systems. This guideline is consistent
with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section
8b(3), Securing Agency Information Systems, as analyzed in A-130, Appendix IV: Analysis of
Key Sections. Supplemental information is provided in A-130, Appendix III.

This Recommendation has been prepared for use by federal agencies. It may be used by
nongovernmental organizations on a voluntary basis and is not subject to copyright. (Attribution
would be appreciated by NIST.)

Nothing in this document should be taken to contradict standards and guidelines made
mandatory and binding on federal agencies by the Secretary of Commerce under statutory
authority. Nor should these guidelines be interpreted as altering or superseding the existing
authorities of the Secretary of Commerce, Director of the OMB, or any other federal official.

Conformance testing for implementations of key establishment schemes, as specified in this
Recommendation, will be conducted within the framework of the Cryptographic Module
Validation Program (CMVP), a joint effort of NIST and the Communications Security
Establishment of the Government of Canada. An implementation of a key establishment scheme
must adhere to the requirements in this Recommendation in order to be validated under the
CMVP. The requirements of this Recommendation are indicated by the word “shall.”

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 5

Table of Contents

1. Introduction ...12

2. Scope and Purpose ...12

3. Definitions, Symbols and Abbreviations ...13

3.1 Definitions .. 13

3.2 Symbols and Abbreviations ... 17

4. Key Establishment Schemes Overview ...21

4.1 Key Agreement Setup by an Owner ... 22

4.2 Key Agreement Process.. 24

4.3 DLC-based Key Transport Process.. 26

5. Cryptographic Elements ..27

5.1 Cryptographic Hash Functions .. 27

5.2 Message Authentication Code (MAC) Algorithm... 28

5.2.1 MacTag Computation .. 28

5.2.2 MacTag Checking .. 28

5.2.3 Implementation Validation Message ... 28

5.3 Random Number Generation... 29

5.4 Nonces... 29

5.5 Domain Parameters.. 29

5.5.1 Domain Parameter Generation... 30

5.5.1.1 FFC Domain Parameter Generation.. 30

5.5.1.2 ECC Domain Parameter Generation... 31

5.5.2 Assurances of Domain Parameter Validity.. 32

5.5.3 Domain Parameter Management .. 32

5.6 Private and Public Keys ... 33

5.6.1 Private/Public Key Pair Generation... 33

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 6

5.6.1.1 FFC Key Pair Generation... 33

5.6.1.2 ECC Key Pair Generation.. 33

5.6.2 Assurances of the Arithmetic Validity of a Public Key..................................... 33

5.6.2.1 Owner Assurances of Static Public Key Validity............................... 33

5.6.2.2 Recipient Assurances of Static Public Key Validity........................... 34

5.6.2.3 Recipient Assurances of Ephemeral Public Key Validity 34

5.6.2.4 FFC Full Public Key Validation Routine .. 35

5.6.2.5 ECC Full Public Key Validation Routine ... 36

5.6.2.6 ECC Partial Public Key Validation Routine 36

5.6.3 Assurances of the Possession of a Static Private Key.. 37

5.6.3.1 Owner Assurances of Possession of a Static Private Key................... 38

5.6.3.2 Recipient Assurance of an Owner’s Possession of a Static Private Key
 38

5.6.3.2.1 Recipient Assurance through Explicit Key Confirmation with
the Claimed Owner .. 39

5.6.3.2.2 Recipient Assurance from a Trusted Party 40

5.6.4 Key Pair Management .. 40

5.6.4.1 Common Requirements on Static and Ephemeral Key Pairs.............. 40

5.6.4.2 Specific Requirements on Static Key Pairs .. 41

5.6.4.3 Specific Requirements on Ephemeral Key Pairs 41

5.7 DLC Primitives .. 42

5.7.1 Diffie-Hellman Primitives.. 42

5.7.1.1 Finite Field Cryptography Diffie-Hellman (FFC DH) Primitive........ 42

5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH)
Primitive43

5.7.2 MQV Primitives ... 43

5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive 43

5.7.2.1.1 MQV2 Form of the FFC MQV Primitive 44

5.7.2.1.2 MQV1 Form of the FFC MQV Primitive 45

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 7

5.7.2.2 ECC MQV Associate Value Function... 45

5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive 45

5.7.2.3.1 Full MQV Form of the ECC MQV Primitive 46

5.7.2.3.2 One-Pass Form of the ECC MQV Primitive........................ 46

5.8 Key Derivation Functions .. 47

5.8.1 Concatenation Key Derivation Function (Preferred)... 47

5.8.2 ASN.1 Key Derivation Function.. 49

5.8.3 IKEv2 Key Derivation... 52

5.8.4 TLS Key Derivation... 52

6. Key Agreement ...52

6.1 Schemes Using Two Ephemeral Key Pairs, C(2) .. 55

6.1.1 Each Party Has a Static Key Pair and Generates an Ephemeral Key Pair, C(2, 2)
.. 55

6.1.1.1 dhHybrid1, C(2, 2, FFC DH) .. 57

6.1.1.2 Full Unified Model, C(2, 2, ECC CDH)... 59

6.1.1.3 MQV2, C(2, 2, FFC MQV) .. 61

6.1.1.4 Full MQV, C(2, 2, ECC MQV) .. 62

6.1.1.5 Rationale for Choosing a C(2, 2) Scheme .. 64

6.1.2 Each Party Generates an Ephemeral Key Pair; No Static Keys are Used, C(2, 0)
.. 65

6.1.2.1 dhEphem, C(2, 0, FFC DH) .. 66

6.1.2.2 Ephemeral Unified Model, C(2, 0, ECC CDH) 67

6.1.2.3 Rationale for Choosing a C(2, 0) Scheme .. 68

6.2 Schemes Using One Ephemeral Key Pair, C(1) .. 69

6.2.1 Initiator Has a Static Key Pair and Generates an Ephemeral Key Pair;
Responder Has a Static Key Pair, C(1, 2).. 69

6.2.1.1 dhHybridOneFlow, C(1, 2, FFC DH) ... 71

6.2.1.2 One-Pass Unified Model, C(1, 2, ECC CDH) 73

6.2.1.3 MQV1, C(1, 2, FFC MQV) .. 76

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 8

Output: The bit string DerivedKeyingMaterial of length keydatalen bits,
“Failure”, or “Invalid”. .. 77

6.2.1.4 One-Pass MQV, C(1, 2, ECC MQV).. 78

6.2.1.5 Rationale for Choosing a C(1, 2) Scheme .. 80

6.2.2 Initiator Generates Only an Ephemeral Key Pair; Responder Has Only a Static
Key Pair, C(1, 1) .. 81

6.2.2.1 dhOneFlow, C(1, 1, FFC DH) .. 82

6.2.2.2 One-Pass Diffie-Hellman, C(1, 1, ECC CDH) 84

6.2.2.3 Rationale in Choosing a C(1, 1) Scheme .. 86

6.3 Scheme Using No Ephemeral Key Pairs, C(0, 2) .. 87

6.3.1 dhStatic, C(0, 2, FFC DH) ... 88

6.3.2 Static Unified Model, C(0, 2, ECC CDH) ... 90

6.3.3 Rationale in Choosing a C(0, 2) Scheme ... 92

7. DLC based Key Transport ...92

8 Key Confirmation ...93

8.1 Assurance of Possession Considerations .. 95

8.2 Unilateral Key Confirmation for Key Agreement Schemes .. 96

8.3 Bilateral Key Confirmation for Key Agreement Schemes .. 98

8.4 Incorporating Key Confirmation into a Key Agreement Scheme 98

8.4.1 C(2,2) Scheme with Unilateral Key Confirmation provided by U to V............ 98

8.4.2 C(2,2) Scheme with Unilateral Key Confirmation provided by V to U............ 99

8.4.3 C(2,2) Scheme with Bilateral Key Confirmation .. 100

8.4.4 C(1,2) Scheme with Unilateral Key Confirmation provided by U to V.......... 101

8.4.5 C(1,2) Scheme with Unilateral Key Confirmation provided by V to U.......... 102

8.4.6 C(1,2) Scheme with Bilateral Key Confirmation .. 103

8.4.7 C(1,1) Scheme with Unilateral Key Confirmation provided by V to U.......... 104

8.4.8 C(0,2) Scheme with Unilateral Key Confirmation provided by U to V.......... 104

8.4.9 C(0,2) Scheme with Unilateral Key Confirmation provided by V to U.......... 105

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 9

8.4.10 C(0,2) Scheme with Bilateral Key Confirmation .. 106

9. Key Recovery..108

10. Implementation Validation...108

Appendix A: Summary of Differences between this Recommendation and ANS X9
Standards (Informative)..110

Appendix B: Mapping of Key Derivation Functions (KDFs) to the KDF Template
(Informative) ..113

B.1 KDF Template.. 113

B.2 Mapping between the KDF template and the Concatenation KDF 115

B.3 Mapping between the KDF template and the ASN.1 KDF ... 116

B.4 Mapping between the KDF template and the IKEv2 KDF .. 116

B.5 Mapping between the KDF template and the TLS KDF ... 117

Appendix C: Data Conversions (Normative)...120

C.1 Integer-to-Byte String Conversion... 120

C.2 Field-Element-to-Byte String Conversion... 120

C.3 Field-Element-to-Integer Conversion.. 120

Appendix D: Examples (Informative) ..121

D.1 FFC Examples .. 121

D.2 ECC Examples .. 121

Appendix E: References (Informative)... 122

Figures

Figure 1: Owner Key Establishment Setup ..23

Figure 2: Key Agreement Process ...25

Figure 3: Key Transport Process..27

Figure 4: General Protocol when Each Party Generates Both Static and Ephemeral Key Pairs ...56

Figure 5: General Protocol when Each Party Generates Ephemeral Key Pairs; No Static Keys are
Used ..65

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 10

Figure 6: General Protocol when the Initiator has both Static and Ephemeral Key Pairs, and the
Responder has only a Static Key Pair ...70

Figure 7: General Protocol when the Initiator has Only an Ephemeral Key Pair, and the
Responder has Only a Static Key Pair..81

Figure 8: Each Party has only a Static Key Pair ..87

Figure 9: C(2,2) Scheme with Unilateral Key Confirmation from Party U to Party V.................99

Figure 10: C(2,2) Scheme with Unilateral Key Confirmation from Party V to Party U...............99

Tables

Table 1: FFC Parameter Size Sets ...30

Table 2: ECC Parameter Size Sets ...31

Table 3: Key Agreement Scheme Categories ..53

Table 4: Key Agreement Scheme Subcategories ...53

Table 5: Key Agreement Schemes...54

Table 6: dhHybrid1 Key Agreement Scheme Summary ...58

Table 7: Full Unified Model Key Agreement Scheme Summary..60

Table 8: MQV2 Key Agreement Scheme Summary ...62

Table 9: Full MQV Key Agreement Scheme Summary..64

Table 10: dhEphem Key Agreement Scheme Summary ...67

Table 11: Ephemeral Unified Model Key Agreement Scheme ...68

Table 12: dhHybridOneFlow Key Agreement Scheme Summary ..73

Table 13: One-Pass Unified Model Key Agreement Scheme Summary.......................................75

Table 14: MQV1 Key Agreement Scheme Summary ...78

Table 15: One-Pass MQV Model Key Agreement Scheme Summary..80

Table 16: dhOneFlow Key Agreement Scheme Summary..84

Table 17: One-Pass Diffie-Hellman Key Agreement Scheme Summary......................................86

Table 18: dhStatic Key Agreement Scheme Summary..90

Table 19: Static Unified Model Key Agreement Scheme Summary...92

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 11

Table 20: Key Agreement Schemes Using Unilateral and Bilateral Key Confirmation94

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 12

1. Introduction

Many U.S. Government Information Technology (IT) systems need to employ well-established
cryptographic schemes to protect the integrity and confidentiality of the data that they process.
Algorithms such as the Advanced Encryption Standard (AES) as defined in Federal Information
Processing Standard (FIPS) 197, Triple DES as adopted in FIPS 46-3, and HMAC as defined in
FIPS 198 make attractive choices for the provision of these services. These algorithms have been
standardized to facilitate interoperability between systems. However, the use of these algorithms
requires the establishment of shared secret keying material in advance. Trusted couriers may
manually distribute this secret keying material. However, as the number of entities using a
system grows, the work involved in the distribution of the secret keying material could grow
rapidly. Therefore, it is essential to support the cryptographic algorithms used in modern U.S.
Government applications with automated key establishment schemes.

2. Scope and Purpose

This Recommendation provides the specifications of key establishment schemes that are
appropriate for use by the U.S. Federal Government, based on standards developed by the
Accredited Standards Committee (ASC) X9, Inc.: ANS X9.42 Agreement of Symmetric Keys
using Discrete Logarithm Cryptography and ANS X9.63 Key Agreement and Key Transport
using Elliptic Curve Cryptography. A key establishment scheme can be characterized as either a
key agreement scheme or a key transport scheme. The asymmetric-key-based key agreement
schemes in this Recommendation are based on the Diffie-Hellman (DH) and Menezes-Qu-
Vanstone (MQV) algorithms. In addition, an asymmetric-key-based key transport scheme is
specified. It is intended that an adjunct key establishment schemes Recommendation will contain
key transport scheme(s) from ANS X9.44 Key Agreement and Key Transport using Factoring-
Based Cryptography, when they become available.

This Recommendation provides a description of selected schemes from ANS X9 standards.
When there are differences between this Recommendation and the referenced ANS X9
standards, this key establishment schemes Recommendation shall have precedence for U.S.
Government applications.

This Recommendation is intended for use in conjunction with NIST Special Publication 800-57,
Recommendation for Key Management [7]. This key establishment schemes Recommendation,
the Recommendation for Key Management [7], and the referenced ANS X9 standards are
intended to provide sufficient information for a vendor to implement secure key establishment
using asymmetric algorithms in FIPS 140-2 [1] validated modules.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 13

3. Definitions, Symbols and Abbreviations

3.1 Definitions

Approved FIPS approved or NIST Recommended. An algorithm or technique that is
either 1) specified in a FIPS or NIST Recommendation, or 2) adopted in a
FIPS or NIST Recommendation and specified either (a) in an appendix to
the FIPS or NIST Recommendation, or (b) in a document referenced by
the FIPS or NIST Recommendation.

Assurance of
identifier

Confidence that identifying information (such as a name) is correctly
associated with an entity.

Assurance of
possession of a
private key

Confidence that an entity possesses a private key associated with a public
key.

Assurance of
validity

Confidence that either a key or a set of domain parameters is
arithmetically correct.

Bit length The length in bits of a bit string.

Certification
Authority (CA)

The entity in a Public Key Infrastructure (PKI) that is responsible for
issuing public key certificates and exacting compliance to a PKI policy.

Cofactor The order of the elliptic curve group divided by the (prime) order of the
generator point specified in the domain parameters.

Domain parameters The parameters used with a cryptographic algorithm that are common to a
domain of users.

Entity An individual (person), organization, device, or process. “Party” is a
synonym.

Ephemeral key A key that is intended for a very short period of use. This is ordinarily in
exactly one transaction of a cryptographic scheme; an exception to this is
when the ephemeral key is used in multiple transactions for a key
transport broadcast. Contrast with static key.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 14

Hash function A function that maps a bit string of arbitrary length to a fixed length bit
string. Approved hash functions satisfy the following properties:

1. (One-way) It is computationally infeasible to find any input that
maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find any
two distinct inputs that map to the same output.

Approved hash functions are specified in FIPS 180-2 [2].

Identifier A bit string that is associated with a person, device or organization. It
may be an identifying name, or may be something more abstract (for
example, a string consisting of an IP address and timestamp), depending
on the application.

Initiator The party that begins a key agreement transaction. Contrast with
responder.

Key agreement A key establishment procedure where the resultant secret keying material
is a function of information contributed by two participants, so that no
party can predetermine the value of the secret keying material
independently from the contribut ions of the other parties. Contrast with
key transport.

Key agreement
transaction

The instance that results in shared secret keying material among different
parties using a key agreement scheme.

Key confirmation A procedure to provide assurance to one party (the key confirmation
recipient) that another party (the key confirmation provider) actually
possesses the correct secret keying material and/or shared secret.

Key derivation The process by which one or more keys are derived from a shared secret
and other information.

Key establishment The procedure that results in shared secret keying material among
different parties.

Key establishment
transaction

An instance of establishing secret keying material using a key
establishment scheme.

Key transport A key establishment procedure whereby one party (the sender) selects a
value for the secret keying material and then securely distributes that
value to another party (the receiver). Contrast with key agreement.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 15

Key transport
transaction

The instance that results in shared secret keying material between
different parties using a key transport scheme.

Key wrap A method of encrypting keys (along with associated integrity
information) that provides both confidentiality and integrity protection
using a symmetric key algorithm.

Keying material The data that is necessary to establish and maintain a cryptographic
keying relationship. Some keying material may be secret, while other
keying material may be public. As used in this Recommendation, secret
keying material may include keys, secret initialization vectors or other
secret information; public keying material includes any non-secret data
needed to establish a relationship.

MacTag Data that allows an entity to verify the integrity of the information. Other
documents sometimes refer to this data as a MAC.

Message
Authentication Code
(MAC) algorithm

A family of one-way (MAC) functions that is parameterized by a
symmetric key and produces a MacTag on arbitrary data. A MAC
algorithm can be used to provide data origin authentication as well as data
integrity. In this Recommendation, a MAC algorithm is used in key
confirmation and validation testing purposes.

Nonce A time-varying value that has at most a negligible chance of repeating,
for example, a random value that is generated anew for each use, a
timestamp, a sequence number, or some combination of these.

Owner For a static key pair, the owner is the entity that is authorized to use the
static private key associated with a public key, whether that entity
generated the static key pair itself or a trusted party generated the key pair
for the entity. For an ephemeral key pair, the owner is the entity that
generated the key pair.

Party An individual (person), organization, device, or process. “Entity” is a
synonym for party.

Provider The party during key confirmation that provides assurance to the other
party (the recipient) that the two parties have indeed established a shared
secret.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 16

Public key
certificate

A set of data that uniquely identifies an entity, contains the entity's public
key (including an indication of the associated set of domain parameters, if
any) and possibly other information, and is digitally signed by a trusted
party, thereby binding the public key to the entity.

Receiver The party that receives secret keying material via a key transport
transaction. Contrast with sender.

Recipient A party that receives (1) keying material: such as a static public key (e.g.,
in a certificate) or an ephemeral public key; (2) assurance: such as an
assurance of the validity of a candidate public key or assurance of
possession of the private key associated with a public key; or (3) key
confirmation.

Responder The party that does not begin a key agreement transaction. Contrast with
initiator.

Scheme A (cryptographic) scheme consists of an unambiguous specification of a
set of transformations that are capable of providing a (cryptographic)
service when properly implemented and maintained. A scheme is a higher
level construct than a primitive and a lower level construct than a
protocol.

Security strength

(Also “Bits of
security” or
“Security level”)

A number associated with the amount of work (that is, the number of
operations) that is required to break a cryptographic algorithm or system.

Security properties The security features (e.g., entity authentication, playback protection, or
key confirmation) that a cryptographic scheme may, or may not, provide.

Sender The party that sends secret keying material to the receiver using a key
transport transaction.

Shall This term is used to indicate a requirement of a Federal Information
processing Standard (FIPS) or a requirement that needs to be fulfilled to
claim conformance to this Recommendation. Note that shall may be
coupled with not to become shall not.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 17

Shared secret keying
material

The secret keying material that is either (1) derived by applying the key
derivation function to the shared secret and other shared information
during a key agreement process, or (2) is transported during a key
transport process.

Shared secret A secret value that has been computed using a key agreement scheme and
is used as input to a key derivation function.

Should This term is used to indicate very important guidance. Note that should
may be coupled with not to become should not.

Static key A key that is intended for use for a relatively long period of time and is
typically intended for use in many instances of a cryptographic key
establishment scheme. Contrast with an ephemeral key.

Symmetric key
algorithm

A cryptographic algorithm that uses one secret key that is shared between
authorized parties.

Trusted party A trusted party is a party that is trusted by an entity to faithfully perform
certain services for that entity. An entity may choose to act as a trusted
party for itself.

Trusted third party A third party that is trusted by its clients to perform certain services, such
as a CA. (The first party is the initiator and the second party is the
responder in a scheme.)

3.2 Symbols and Abbreviations

General:

AES Advanced Encryption Standard (as specified in FIPS 197 [4]).

ASC The American National Standards Institute (ANSI) Accredited Standards Committee.

ANS American National Standard.

ASN.1 Abstract Syntax Notation One.

CA Certification Authority.

CDH The cofactor Diffie-Hellman key agreement primitive.

DH The (non-cofactor) Diffie-Hellman key agreement primitive.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 18

DLC Discrete Logarithm Cryptography, which is comprised of both Finite Field
Cryptography (FFC) and Elliptic Curve Cryptography (ECC).

EC Elliptic Curve.

ECC Elliptic Curve Cryptography, the public key cryptographic methods using an elliptic
curve. For example, see ANS X9.63 [12].

FF Finite Field.

FFC Finite Field Cryptography, the public key cryptographic methods using a finite field.
For example, see ANS X9.42 [10].

HMAC Keyed-hash Message Authentication Code (as specified in FIPS 198 [5]).

ID The bit string denoting the identifier associated with an entity.

H An Approved hash function.

KC Key Confirmation.

KDF Key Derivation Function.

MAC Message Authentication Code.

MQV The Menezes-Qu-Vanstone key agreement primitive.

SHA Secure Hash Algorithm.

TTP A Trusted Third Party.

U The initiator of a key establishment process.

V The responder in a key establishment process.

{X} Indicates that the inclusion of X is optional.

X || Y Concatenation of two strings X and Y.

||x|| The length of x in bits.

x The ceiling of x; the smallest integer ≥ x. For example, 5 = 5, 5.3 = 6.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 19

The following notations for FFC and ECC are consistent with those used in the ANS X9.42 and
ANS X9.63 standards; however, it should be recognized that the notation between the standards
is inconsistent (for example, x and y are used as the private and public keys in ANS X9.42,
whereas x and y are used as the coordinates of a point in ANS X9.63).

FFC (ANS X9.42):

g An FFC domain parameter, the generator of the subgroup of order q.

mod p The reduction modulo p of an integer value.

p An FFC domain parameter, the (large) prime field order.

pgenCounter An FFC domain parameter, a value that may be output during domain
parameter generation to provide assurance at a later time that the resulting
domain parameters were generated arbitrarily.

q An FFC domain parameter, the (small) prime multiplicative subgroup order.

rU, rV Party U or Party V’s ephemeral private key. These are integers in the range
[1, q-1].

tU, tV Party U or Party V’s ephemeral public key. These are integers in the range
[2, p-2] representing elements in the finite field of size p.

SEED An FFC domain parameter, an initialization value that is used during
domain parameter generation that can also be used to provide assurance at a
later time that the resulting domain parameters were generated arbitrarily.

xU, xV Party U or Party V’s static private key. These are integers in the range
[1, q-1].

yU, yV Party U or Party V’s static public key. These are integers in the range
[2, p-2] representing elements in the finite field of size p.

Z A shared secret that is used to derive secret keying material using a key
derivation function.

Ze An ephemeral shared secret that is computed using the Diffie-Hellman
primitive.

Zs A static shared secret that is computed using the Diffie-Hellman primitive.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 20

ECC (ANS X9.63):

a, b An ECC domain parameter; two field elements that define the equation of an
elliptic curve.

avf(Q) The associate value of the elliptic curve point Q.

de,U, de,V Party U’s and Party V’s ephemeral private keys. These are integers in the range
[1, n-1].

ds,U, ds,V Party U’s and Party V’s static private keys. These are integers in the range
[1, n-1].

FR Field Representation, an ECC domain parameter that indicates the basis used.

G An ECC domain parameter, which is a distinguished point on an elliptic curve
that generates the subgroup of order n.

h An ECC domain parameter, the cofactor, which is the order of the elliptic curve
divided by the order of the point G.

n An ECC domain parameter; the order of the point G.

O The point at infinity, a special point in an elliptic curve group that serves as the
(additive) identity.

q An ECC domain parameter, the field size.

Qe,U, Qe,V Party U’s and Party V’s ephemeral public keys. These are points on the elliptic
curve defined by the domain parameters.

Qs,U, Qs,V Party U’s and Party V’s static public keys. These are points on the elliptic curve
defined by the domain parameters.

SEED An ECC domain parameter; an initialization value that is used during domain
parameter generation that can also be used to provide assurance at a later time
that the resulting domain parameters were generated arbitrarily.

xP, yP Elements of the finite field of size q, representing the x and y coordinates,
respectively, of a point P. These are integers in the interval [0, p-1] in the case
that q is an odd prime p, or are bit strings of length m bits in the case that q = 2m.

Z A shared secret that is used to derive secret keying material using a key
derivation function.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 21

Ze An ephemeral shared secret that is computed using the Diffie-Hellman primitive.

Zs A static shared secret that is computed using the Diffie-Hellman primitive.

4. Key Establishment Schemes Overview

Secret cryptographic keying material may be electronically established between parties by using
a key establishment scheme, that is, by using either a key agreement scheme or a key transport
scheme.

During key agreement (where both parties contribute to the shared secret and, therefore, the
derived secret keying material), the secret keying material to be established is not sent directly;
rather, information is exchanged between both parties that allows each party to derive the secret
keying material. Key agreement schemes may use either symmetric key or asymmetric key
(public key) techniques. The key agreement schemes described in this Recommendation use
public key techniques. The party that begins a key agreement scheme is called the initiator, and
the other party is called the responder.
During key transport (where one party selects the secret keying material), wrapped (that is,
encrypted) secret keying material is transported from the sender to the receiver. Key transport
schemes may use either symmetric key or public key techniques; only key transport schemes
based on Discrete Logarithm Cryptography (DLC) cryptography are described in this
Recommendation. The party that sends the secret keying material is called the sender, and the
other party is called the receiver.

The security of the DLC schemes in this Recommendation is based on the intractability of the
discrete logarithm problem. The schemes calculated over a finite field (FF) are based on ANS
X9.42. The schemes calculated using elliptic curves (EC) are based on ANS X9.63.

This Recommendation specifies several processes that are associated with key establishment
(including processes for generating domain parameters and for deriving secret keying material
from a shared secret). In each case, equivalent processes may be used. Two processes are
equivalent if, when the same values are input to each process (either as input parameters or as
values made available during the process), the same output is produced. Some processes are used
to provide assurance (for example, assurance of the arithmetic validity of a public key or
assurance of ownership of a private key associated with a public key). The party that provides
the assurance is called the provider (of the assurance), and the other party is called the recipient
(of the assurance).

Note that the terms initiator, responder, sender, receiver, provider and recipient have specific
meanings in this Recommendation.

A number of steps are performed to establish secret keying material as described in Sections 4.1
and 4.2.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 22

4.1 Key Agreement Setup by an Owner

The owner of a private/public key pair is the entity that is authorized to use the private key of
that key pair. Figure 1 depicts the steps that may be required of that entity when setting up a key
agreement process. The first step is to obtain appropriate domain parameters that are generated
as specified in Section 5.5.1; either the entity itself generates the domain parameters, or the entity
obtains domain parameters that another entity has generated. Having obtained the domain
parameters, the entity obtains assurance of the validity of those domain parameters; approved
methods for obtaining this assurance are provided in Section 5.5.2.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 23

Figure 1: Owner Key Establishment Setup

If the entity will be using a key establishment scheme that requires that the entity have a static
key pair, the entity obtains this key pair. Either the entity generates the key pair as specified in
Section 5.6.1 or a trusted party generates the key pair and provides it to the entity. The entity
(i.e., the owner) obtains assurance of the validity of its static public key and also obtains
assurance that it actually possesses the (correct) static private key. Approved methods for

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 24

obtaining assurance of public key validity by the owner are addressed in Section 5.6.2.1;
approved methods for an owner to obtain assurance of the actual possession of the private key
are provided in Section 5.6.3.1.

An identifier (see Section 3.1) is used to label the entity that is authorized to use the static private
key corresponding to a particular static public key (i.e., the identifier labels the key pair’s
owner). This label may uniquely distinguish the entity from all others, in which case it could
rightfully be considered an identity. However, the label may be something less specific – an
organization, nickname, etc. – hence, the term identifier is used in this Recommendation, rather
than the term identity. A key pair’s owner is responsible for ensuring that the identifier
associated with its static public key is appropriate for the applications in which it will be used.

This Recommendation assumes that there is a trustworthy binding of each entity’s identity to the
entity’s static public key. The binding of an identifier to a static public key may be accomplished
by a trusted authority (i.e., a binding authority; for example, a registration authority working with
a CA who creates a certificate containing both the static public key and the identifier). The
binding authority verifies the identifier chosen for the owner. The binding authority is also
responsible for obtaining assurance of: the validity of the domain parameters associated with the
owner’s key pair, the arithmetic validity of the owner’s static public key, and the owner’s
possession of the static private key corresponding to that static public key. (See, for example,
Section 5.5.2, Section 5.6.2.2 [method 1], and Section 5.6.3.2.1, where the binding authority acts
as the recipient of the static public key.)

After the above steps have been performed, the entity (i.e., the static key pair owner) is ready to
enter into a key establishment process with another compatibly setup ent ity.

4.2 Key Agreement Process

Figure 2 depicts the steps that may be required of an entity when establishing secret keying
material with another entity using one of the key agreement schemes described in this
Recommendation; however, some discrepancies in order may occur, depending on the
communication protocol in which the key agreement process is performed. Depending on the key
agreement scheme and the available keys, either entity could be the key agreement initiator. Note
that in a given transaction, one or more of the indicated actions may be omitted (depending on
the key agreement scheme). For example, key confirmation may be omitted, depending on the
security requirements of the participants.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 25

Figure 2: Key Agreement Process

Each participant verifies that the identifier of the other entity corresponds to the entity with
whom the participant wishes to establish secret keying material.

Each entity that requires the other entity’s static public key for use in the key establishment
scheme obtains that public key and obtains assurance of its validity. Approved methods for
obtaining assurance of the validity of a static public key are provided in Section 5.6.2.2.

Each entity that requires the other entity’s ephemeral public key for use in the key establishment
scheme obtains that public key and obtains assurance of its validity. Ephemeral key pairs are
generated as specified in Section 5.6.1; the ephemeral private key is not provided to the other
entity. Approved methods for obtaining assurance of the validity of an ephemeral public key are
provided in Section 5.6.2.4.

If the key agreement scheme requires that an entity provide a nonce, the nonce is generated as
specified in Section 5.4 and sent to the other entity.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 26

Assurance of static private key possession is obtained prior to using the derived keying material
for purposes beyond those of the key agreement transaction itself (See Section 5.6.3.2).

Each participant in the key agreement process uses the appropriate public and private keys to
generate a shared secret as specified in Section 6 for each key agreement scheme. Using the
shared secret, each participant then derives secret keying material from the shared secret and
other information as specified in Section 5.8.

If one or both of the participants wish to confirm that the other entity has computed the same
shared secret or the same secret keying material as part of the key agreement process, key
confirmation is performed as specified in Section 8.4.

4.3 DLC-based Key Transport Process

Figure 3 depicts the steps that shall be performed by an entity when transporting secret keying
material to another entity using a key transport scheme. Depending on the available keys, either
entity could be the key transport sender. Prior to performing key transport, a key-wrapping key is
established by using a key agreement process as specified in Section 7. Key confirmation may be
performed to obtain assurance that both parties possess the same key wrapping key. The sender
selects keying material to be sent to the other entity, wraps the keying material using the key-
wrapping key and sends the wrapped keying material to the other entity. The receiving entity
receives the wrapped keying material and unwraps it using the previously established key-
wrapping key.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 27

Figure 3: Key Transport Process

5. Cryptographic Elements

This section describes the basic computations that are performed and the assurances that need to
be obtained when performing DLC based key establishment. The schemes described in Section 6
are based upon the correct implementation of these computations and assurances.

Tables 1 and 2 of Section 5.5 list parameter size sets to be used in the selection of cryptographic
elements. All cryptographic elements used together shall be selected in accordance with the
same parameter size set.

5.1 Cryptographic Hash Functions

An Approved hash function shall be used when a hash function is required (for example, for the
key derivation function or to compute a MAC when HMAC, as specified in FIPS 198, is used).
FIPS 180-2 [2] specifies Approved hash functions. The hash function shall be selected in
accordance with the parameter lists in Tables 1 and 2 of Section 5.5.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 28

5.2 Message Authentication Code (MAC) Algorithm

A Message Authentication Code (MAC) algorithm defines a family of one-way (MAC) functions
that is parameterized by a symmetric key. In key establishment schemes, an entity is sometimes
required to compute a MacTag on received or derived data using the MAC function determined
by a symmetric key derived from a shared secret. The MacTag is sent to another entity in order
to confirm that the shared secret was correctly computed. An Approved MAC algorithm shall be
used to compute a MacTag, for example, HMAC [5].

The MAC algorithm shall be used to provide key confirmation as specified in this
Recommendation when key confirmation is desired, and shall be used to validate
implementations of the key establishment schemes specified in this Recommendation. MacTag
computation and checking are defined in Sections 5.2.1 and 5.2.2 of this Recommendation.

5.2.1 MacTag Computation
The computation of the MacTag is represented as follows:

MacTag = MAC(MacKey, MacLen, MacData)).

The MacTag computation shall be performed using an Approved MAC algorithm. In the above
equation, MAC represents an Approved MAC algorithm; MacKey represents a symmetric key
obtained from the DerivedKeyingMaterial (see Section 5.8); MacLen represents the length of
MacTag; and MacData represents the data on which that function is evaluated. The minimum for
MacLen is specified in Tables 1 and 2 of Section 5.5. The minimum size for MacKey is also
specified in Tables 1 and 2. See [5] and [6].

5.2.2 MacTag Checking
To check a received MacTag (e.g., received during key confirmation and/or implementation
validation), a new MacTag is computed—using the values of MacKey, MacLen, and MacData
possessed by the recipient (as specified in Section 5.2.1). The new MacTag is compared with the
received MacTag. If their values are equal, then it may be inferred that the same MacKey,
MacLen, and MacData values were used in the two MacTag computations.

5.2.3 Implementation Validation Message
For purposes of validating an implementation of the schemes in this Recommendation during an
implementation validation test, the value of MacData shall be the string “Standard Test
Message”, followed by a 16-byte field for a nonce. The default value for this field is all binary
zeros. Different values for this field will be specified during testing. This is for the purposes of
testing when no key confirmation capability exists.

Note: ANS X9.42 defines MacData as “ANSI X9.42 Testing Message”. ANS X9.63 does not
address implementation validation at this level of detail. Note that the implementation test
message used for NIST validation is a different text string from the implementation test message
for ANS X9.42 validation.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 29

5.3 Random Number Generation

Whenever this Recommendation requires the use of a randomly generated value (for example,
for keys or nonces), the values shall be generated using an Approved random bit generator
(RBG) at an appropriate security level: 112, 128, 192 or 256 bits.

5.4 Nonces

A nonce is a time-varying value that has (at most) a negligible chance of repeating. For example,
a nonce may be composed of one (or more) of the following components:

1. A random value that is generated anew for each nonce, using an approved random bit
generator. The security strength of the random bit generator and the entropy of the nonce
shall be at least one half the bit length required for private keys (as specified in Tables 1
and 2 of Section 5.5). A nonce containing a component of this type is called a random
nonce.

2. A timestamp of sufficient resolution (detail) so that it is different each time it is used.

3. A monotonically increasing sequence number, or

4. A combination of a timestamp and a monotonically increasing sequence number such that
the sequence number is reset only when the timestamp changes. (For example, a
timestamp may show the date but not the time of day, so a sequence number is appended
that will not repeat during a particular day.)

Nonces are used, for example, in implementation validation testing (Section 5.2.3), in C(0,2)
schemes (Section 6.3), and in key confirmation (Section 8).

When using a nonce, a random nonce should be used.

5.5 Domain Parameters

Discrete Logarithm Cryptography (DLC), which is, Finite Field Cryptography (FFC) and Elliptic
Curve Cryptography (ECC), requires that the public and private key pairs be generated with
respect to a particular set of domain parameters. A candidate set of domain parameters is said to
be valid when it conforms to all the requirements specified in this Recommendation. A user of a
candidate set of domain parameters (for example, either an initiator or a responder) shall have
assurance of domain parameter validity prior to using them. Although domain parameters are
public information, they shall be managed so that the correct correspondence between a given
key pair and its set of domain parameters is maintained for all parties that use the key pair.
Domain parameters may remain fixed for an extended time period, and one set of domain
parameters may be used with multiple key pairs and with multiple key establishment schemes.

Some schemes in ANS X9.42 and X9.63 allow the set of domain parameters used and associated
with static keys to be different from the set of domain parameters used and associated with
ephemeral keys. For this Recommendation, however, only one set of domain parameters shall be
used during any key establishment transaction using a given run of a scheme (that is, the static-

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 30

key domain parameters and the ephemeral-key domain parameters used in one scheme shall be
the same).

5.5.1 Domain Parameter Generation

5.5.1.1 FFC Domain Parameter Generation
Domain parameters for FFC schemes are of the form (p, q, g{, SEED, pgenCounter}), where p is
the (larger) prime field order, q is the (smaller) prime (multiplicative) subgroup order, g is a
generator of the q-order cyclic subgroup of GF(p)*; and SEED and pgenCounter are values used
in the canonical process of generating and validating p and q, and possibly g, depending on the
method of generation. FFC Domain parameters shall be generated using a method specified in
FIPS 186-3 [3].

Table 1: FFC Parameter Size Sets

FFC Parameter Set Name FA FB FC

Bit length of field order p 1024 2048 20481

Bit length of subgroup order q 160 224 256

Bit length of private key 160 224 256

Minimum bit length of the hash function output 160 224 256

Minimum MAC key size (for use in key confirmation) 80 112 128

Minimum MacLen (for use in key confirmation) 80 112 128

As shown in Table 1, there are three parameter size sets (named FA through FC) for FFC; all the
parameters of a particular set shall be used together. For U.S. government applications, one or
more sets shall be selected based on the solution requirements. See the comparable security table
in the Recommendation for Key Management [7] to assess the comparable security of any
particular parameter size set. The Recommendation for Key Management [7] provides guidance
on selecting an appropriate security strength and an appropriate FFC parameter set. If the
appropriate security strength does not have an FFC parameter set, then see Section 5.5.1.2.

For this Recommendation, the size of p (key size) is a multiple of 1024 bits; the exact length
depends on the FFC parameter set selected. For this Recommendation, the size of q is a specific

1 Parameter size set FC is included with the same field order length as set FB to allow finite field applications with a
2048-bit field order to have the option of increasing the private key size to 256 bits without having to increase the
field order (a more substantial change).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 31

bit length depending on the FFC parameter set selected. The FFC parameters p, q, and g shall be
generated as specified in FIPS 186-3 [3].

5.5.1.2 ECC Domain Parameter Generation
Domain parameters for ECC schemes are of the form (q, FR, a, b{, SEED}, G, n, h), where q is
the field size; FR is an indication of the basis used; a and b are two field elements that define the
equation of the curve; SEED is an optional bit string which is included if the elliptic curve was
randomly generated in a verifiable fashion; G is a generating point (possibly generated from the
SEED) consisting of (xG, yG) of prime order on the curve; n is the order of the point G; and h is
the cofactor (which is equal to the order of the curve divided by n). Note that the field size q may
be either an odd prime p or 2m, where m is a prime.

Table 2: ECC Parameter Size Sets

ECC Parameter Set Name EA EB EC ED EE

Bit length of ECC subgroup order n 160-
223

224-
255

256-
383

384-
511

512+

Maximum bit length of ECC cofactor h 10 14 16 24 32

Bit length of private key 160 224 256 384 512

Minimum bit length of the hash function
output

160 224 256 384 512

Minimum MAC key size (for use in key
confirmation)

80 112 128 192 256

Minimum MacLen (for use in key
confirmation)

80 112 128 192 256

As shown in Table 2, there are five parameter size sets (named EA, EB, EC, ED and EE) for
ECC; all the members of a particular set shall be used together. For U.S. government
applications, one or more sets shall be selected based on the solution requirements. See the
comparable security table in the Recommendation for Key Management [7] to assess the
comparable security of any particular parameter size set. The Recommendation for Key
Management [7] provides guidance on selecting the appropriate security strength and an
appropriate ECC key size.

The five different cofactor maximums each ensure that the large subgroup is unique and that
cofactor multiplication is reasonably efficient. The ECC domain parameters shall either be
generated as specified in ANS X9.62 [13] or selected from the recommended elliptic curve
domain parameters specified in FIPS 186-3 [3]. (Note: ANS X9.62, rather than ANS X9.63,

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 32

specifies the most current method of generating ECC domain parameters at the time of writing
this Recommendation.)

5.5.2 Assurances of Domain Parameter Validity
Secure key establishment depends on the arithmetic validity of the set of domain parameters used
by the parties. Each party shall have assurance of the validity of a candidate set of domain
parameters. Each party shall obtain assurance that the candidate set of domain parameters is
valid in at least one of the following three ways:

1. The party itself generates the set of domain parameters according to the requirements
specified in Section 5.5.1.

2. The party performs an explicit domain parameter validation as specified in:

a. FIPS 186-3 Appendix A.1 for FFC.

b. ANS X9.62-2 Annex A3 for ECC.

3. The party has received assurance from a trusted third party (for example, a CA or NIST2)
that the set of domain parameters were valid at the time that they were generated by
reason of either method 1 or 2 above.

Note: Some domain parameters currently require the use of SHA-1 for generation and
validation. At some time in the future, it is expected that SHA-1 will no longer be an
Approved hash function. However, if a set of domain parameters was successfully
validated with SHA-1 while it was still an Approved hash function, then those domain
parameters will continue to qualify as valid even after the use of SHA-1 is no longer
Approved. In particular, this is true of the NIST Recommended Elliptic Curves.

The party shall know which method(s) of assurance were used in order for the party to determine
that the provided assurance is sufficient and appropriate to meet the application’s requirements.

5.5.3 Domain Parameter Management
A particular set of domain parameters shall be protected against modification or substitution
until the set is deactivated (if and when it is no longer needed). Each private/public key pair shall
be correctly associated with its specific set of domain parameters.

2 If using an elliptic curve from the list of NIST recommended curves in FIPS 186-3 [3].

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 33

5.6 Private and Public Keys

5.6.1 Private/Public Key Pair Generation

5.6.1.1 FFC Key Pair Generation
For the FFC schemes, each static and ephemeral private key x and public key y shall be
generated using an Approved method and the selected valid domain parameters (p, q, g{, SEED,
pgenCounter}) (See Appendix B of FIPS 186-3). Each private key x shall be unpredictable, shall
have bit length as required by the selected parameter size set (see Table 1 in Section 5.5.1.1), and
shall be generated in the range from [1 to q-1] using an Approved random bit generator. The
public key y is computed by using the following formula: y = gx mod p.

5.6.1.2 ECC Key Pair Generation
For the ECC schemes, each static and ephemeral private key d and public key Q shall be
generated using an Approved method and the selected domain parameters (q, FR, a, b{, SEED},
G, n, h) (See Appendix B of FIPS 186-3). Each private key, d, shall be unpredictable, shall have
bit length as required by the selected parameter size set (see Table 2 in Section 5.5.1.2), and
shall be generated in the range from [1 to n-1] using an Approved random bit generator. The
public key Q is computed by using the following formula: Q = (xQ, yQ) = dG.

5.6.2 Assurances of the Arithmetic Validity of a Public Key
Secure key establishment depends on the arithmetic validity of the public key. To explain the
assurance requirements, some terminology needs to be defined. The owner of a static key pair is
defined as the entity that is authorized to use the private key that corresponds to the public key;
this is independent of whether or not the owner generated the key pair. The recipient of a static
public key is defined as the entity that is participating in a key establishment transaction with the
owner and obtains the key before or during the current transaction. The owner of an ephemeral
public key is the entity that generated the key as part of a key establishment transaction. The
recipient of an ephemeral public key is the entity that receives the key during a key establishment
transaction with the owner.

Both the owner and a recipient of a candidate public key shall have assurance of its arithmetic
validity before using it, as specified below, and shall know the method used to obtain the
assurance in order to determine that the assurance is appropriate and sufficient to meet the
application’s requirements. Prior to obtaining this assurance of arithmetic validity, the owner and
recipient of the public key shall have assurance of the validity of the domain parameters. The
procedures presented for obtaining public key validity assume that the domain parameters have
been validated.

5.6.2.1 Owner Assurances of Static Public Key Validity
The owner of a static public key shall obtain assurance of its validity in one or more of the
following ways:

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 34

1. Owner Full Validation - The owner performs a successful full public key validation (see
Sections 5.6.2.4 and 5.6.2.5). For example, a key generation routine may perform full
public key validation as part of its processing.

2. TTP Full Validation – The owner receives assurance that a trusted third party (trusted by
the owner) has performed a successful full public key validation (see Sections 5.6.2.4 and
5.6.2.5).

3. Owner Generation – The owner has generated the public key from the private key (see
Section 5.6.1).

4. TTP Generation – The owner has received assurance that a trusted third party (trusted by
the owner) has generated the public/private key pair and has provided the key pair to the
owner (see Section 5.6.1).

The owner shall know the method(s) of assurance that were used in order for the owner to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements. Note that the use of a TTP to generate a key pair for an owner means that the TTP
is trusted (by both the owner and any recipient) to not use the owner’s private key to masquerade
as the owner.

5.6.2.2 Recipient Assurances of Static Public Key Validity
The recipient of a static public key shall obtain assurance of its validity in one or more of the
following ways:

1. Recipient Full Validation - The recipient performs a successful full public key validation
(see Sections 5.6.2.4 and 5.6.2.5).

2. TTP Full Validation – The recipient receives assurance that a trusted third party (trusted
by the recipient) has performed a successful full public key validation (see Sections
5.6.2.4 and 5.6.2.5).

3. TTP Generation – The recipient receives assurance that a trusted third party (trusted by
the recipient) has generated the public/private key pair in accordance with Section 5.6.1
and has provided the key pair to the owner.

The recipient shall know the method(s) of assurance that were used in order for the recipient to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements. Note that the use of a TTP to generate a key means that the TTP is trusted (by both
the recipient and the owner) to not use the owner’s private key to masquerade as the owner.

5.6.2.3 Recipient Assurances of Ephemeral Public Key Validity
The recipient of an ephemeral public key shall obtain assurance of its validity in one or more of
the following ways:

1. Recipient Full Validation - The recipient performs a successful full public key validation
(see Sections 5.6.2.4 and 5.6.2.5).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 35

2. TTP Full Validation – The recipient receives assurance that a trusted third party (trusted
by the recipient) has performed a successful full public key validation (see Sections
5.6.2.4 and 5.6.2.5). For example, a trusted processor may only forward an ephemeral
public key to the recipient if the public key passes a full public key validation.

3. Recipient ECC Partial Validation - If using an ECC method (only), the recipient performs
a successful partial public key validation (see Section 5.6.2.6).

4. TTP ECC Partial Validation – If using an ECC method (only), the recipient receives
assurance that a trusted third party (trusted by the recipient) has performed a successful
partial public key validation (see Section 5.6.2.6). For example, a trusted processor may
only forward an ECC ephemeral public key to the recipient if it passes a partial public
key validation.

The recipient shall know the method(s) of assurance that were used in order for the recipient to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements.

5.6.2.4 FFC Full Public Key Validation Routine
FFC full public key validation refers to the process of checking all the arithmetic properties of a
candidate FFC public key to ensure that it has the unique correct representation in the correct
subgroup (and therefore is also in the correct multiplicative group) of the finite field specified by
the associated FFC domain parameters. FFC full public key validation does not require
knowledge of the associated private key and so may be done at any time by anyone. This method
shall be used with static and ephemeral FFC public keys when assurance of the validity of the
keys is obtained by method 1 or method 2 of Sections 5.6.2.1, 5.6.2.2, and 5.6.2.3.

Input:
1. (p, q, g{, SEED, pgenCounter}): A valid set of FFC domain parameters, and

2. y: A candidate FFC public key.

Process:

1. Verify that 2 ≤ y ≤ p-2.

 (Ensures that the key has the unique correct representation and range in the field.)

2. Verify that yq = 1 (mod p).

 (Ensures that the key has the correct order and is in the correct subgroup.)

Output: If any of the above checks fail, then output “invalid”. Otherwise, output “full validation
success”.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 36

5.6.2.5 ECC Full Public Key Validation Routine
ECC full public key validation refers to the process of checking all the arithmetic properties of a
candidate ECC public key to ensure that it has the unique correct representation in the correct
(additive) subgroup (and therefore is also in the correct EC group) specified by the associated
ECC domain parameters. ECC full public key validation does not require knowledge of the
associated private key and so may be done at any time by anyone. This method may be used for a
static ECC public key or an ephemeral ECC public key when assurance of the validity of the key
is obtained by method 1 or method 2 of Sections 5.6.2.1, 5.6.2.2, and 5.6.2.3.

Input:
1. (q, FR, a, b{, SEED}, G, n, h): A valid set of ECC domain parameters, and
2. Q=(xQ, yQ): A candidate ECC public key.

Process:
1. Verify that Q is not the point at infinity O.

 (Partial check of the public key for an invalid range in the EC group.)

2. Verify that xQ and yQ are integers in the interval [0, p-1] in the case that q is an odd prime
p, or that xQ and yQ are bit strings of length m bits in the case that q = 2m.

 (Ensures that each coordinate of the public key has the unique correct representation of
an element in the underlying field.)

3. If q is an odd prime p, verify that (yQ)2
 ≡ (xQ)3 + axQ + b (mod p).

 If q = 2m, verify that (yQ)2 + xQ yQ = (xQ)3 + a(xQ)2 + b in the finite field of size 2m.

 (Ensures that the public key is on the correct elliptic curve.)

4. Verify that nQ = O.

 (Ensures that the public key has the correct order. Along with check 1, ensures that the
public key is in the correct range in the correct EC subgroup, that is, it is in the correct
EC subgroup and is not the identity element.)

Output: If any of the above checks fail, then output “Invalid”. Otherwise, output “Full
validation success”.

5.6.2.6 ECC Partial Public Key Validation Routine
ECC partial public key validation refers to the process of checking some (but not all) of the
arithmetic properties of a candidate ECC public key to ensure that it is in the correct group (but
not necessarily the correct subgroup) specified by the associated ECC domain parameters. ECC
Partial Public Key Validation omits the validation of subgroup membership, and therefore is
usually faster than ECC Full Public Key Validation. ECC partial public key validation does not

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 37

require knowledge of the associated private key and so may be done at any time by anyone. This
method may only be used for an ephemeral ECC public key when assurance of the validity of the
key is obtained by method 3 or 4 of Section 5.6.2.3.

Input:
1. (q, FR, a, b{, SEED}, G, n, h): A valid set of ECC domain parameters, and
2. Q’=(xQ, yQ): A candidate ECC public key.

Process:
1. Verify that Q’ is not the point at infinity O.

 (Partial check of the public key for an invalid range in the EC group.)

2. Verify that xQ and yQ are integers in the interval [0, p-1] in the case that q is an odd prime
p, or that xQ and yQ are bit strings of length m bits in the case that q = 2m.

(Ensures that each coordinate of the public key has the unique correct representation of
an element in the underlying field.)

3. If q is an odd prime p, verify that (yQ) 2
 ≡ (xQ)3 + axQ + b (mod p).

 If q = 2m, verify that (yQ)2 + xQ yQ = (xQ)3 + a(xQ)2 + b in the finite field of size 2m.

 (Ensures that the public key is on the correct elliptic curve.)

 (Note: Since its order is not verified, there is no check that the public key is in the correct
EC subgroup.)

Output: If any of the above checks fail, then output “Invalid”. Otherwise, output “Partial
validation success”.

5.6.3 Assurances of the Possession of a Static Private Key
The security of key agreement schemes that use static key pairs depends on limiting knowledge
of the static private keys to those who have been authorized to use them (i.e., their respective
owners). In addition to preventing unauthorized entities from gaining access to private keys, it is
also important to obtain assurance that authorized users are in possession of their correct private
keys. For example, this Recommendation requires that parties obtain assurance that they actually
possess their own static private keys, and a binding authority is required to obtain assurance of
an owner’s possession of the appropriate static private key before binding an identifier to the
owner’s static public key. As assurance of private key possession is not meaningful without
assurance of public key validity, the assurance of the validity of a public key shall be obtained
either prior to or concurrently with obtaining assurance of possession of the associated private
key. Note that as time passes, an owner may lose possession of the associated private key,
deliberately or due to an error; for this reason, more current assurance of possession can be of
more value for some applications.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 38

5.6.3.1 Owner Assurances of Possession of a Static Private Key
The owner of a static public key shall have assurance that the owner actually possesses the
associated private key in one or more of the following ways:

1. Owner Receives Assurance via Explicit Key Confirmation – The owner has performed a
successful key establishment transaction with another party. Explicit key confirmation
shall be performed with the owner as key confirmation recipient in order to obtain
assurance that the private key functions correctly. See Section 8 for further explanation.

2. Owner Receives Assurance via Use of an Encrypted Certificate- The owner has performed
a successful key establishment transaction with a Certificate Authority (trusted by the
owner). The CA generated a certificate containing the owner’s public key and encrypted
the certificate using a symmetric key that was derived from a key establishment transaction
that used that public key. Only the encrypted form of the certificate is provided to the
owner. By successfully decrypting the certificate, the owner obtains assurance of
possession (at the time of the key establishment).

3. Owner Receives Assurance via Key Regeneration – The owner has regenerated the public
key from the private key, with the regenerated pub lic key being equal to the originally
generated public key. Note that this method may be useful if the private key were
generated by a party other than the owner or as an integrity check on a key pair that has
been stored for a long period of time.

4. Owner Receives Assurance via Trusted Provision - A trusted party (trusted by the owner)
has provided the private key and public key to the owner using a trusted distribution
method. The use of this method implies (1) that the trusted party has provided a private
key that is consistent with the public key and (2) that the owner trusts the trusted party to
not use the private key to masquerade as the owner.

5. Owner Receives Assurance via Key Generation - The act of generating a key pair, with the
public key being an output, is a way for the owner to obtain assurance of possession. This
method allows an owner who protects his/her own keys to have assurance of possession
without additional computation. Further assurance may be obtained through the use of one
or more of the above methods. Note that this method may not detect algorithm
implementation errors, hardware errors, random bit flips, etc.

The owner shall know the method(s) of assurance that was used in order for the owner to
determine that the provided assurance is sufficient and appropriate to meet the application’s
requirements.

5.6.3.2 Recipient Assurance of an Owner’s Possession of a Static Private Key
When a pair of entities engages in a key agreement transaction, there is (at least) an implicit
claim of ownership made whenever a static public key is provided on behalf of a particular party.
That party is considered to be a claimed owner of the corresponding static key pair – as opposed

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 39

to being a true owner – until adequate assurance can be provided that the party is actually the one
authorized to use the static private key.

For any key agreement transaction that employs a static public key in the computation of a
shared secret from which keying material is derived, this Recommendation requires the
following: Prior to using the derived keying material for purposes beyond those of the key
agreement transaction itself, the recipient of another party’s static public key shall obtain
assurance that the public key’s owner has demonstrated possession of the corresponding static
private key as described in Section 5.6.3.2.1 or Section 5.6.3.2.2.

This requirement does not prohibit the parties to a key agreement transaction from using derived
keying material for purposes supporting the key agreement transaction itself. For example,
Section 5.6.3.2.1 describes circumstances under which the recipient of a static public key may
obtain assurance that the claimed owner is in possession of the corresponding static private key
(and thus, that the claimed owner is the true owner) by engaging in a key agreement transaction
with the claimed owner, establishing a (purportedly) shared secret, and — as part of that same
transaction — using a portion of the derived keying material as the MacKey in explicit key
confirmation computations. Once the key confirmation is successfully completed, the parties
may use the remainder of the derived keying material for other purposes.

The recipient of a static public key shall know the method(s) used for obtaining assurance of the
owner’s possession of the corresponding static private key in order for the recipient to determine
that the provided assurance is sufficient and appropriate to meet the intended application’s
requirements.

5.6.3.2.1 Recipient Assurance through Explicit Key Confirmation with the Claimed
Owner

The recipient of a static key can obtain assurance of the claimed owner’s possession of the
corresponding private key by performing key confirmation with the claimed owner serving as the
key confirmation provider (see Section 8). Note that the recipient of the static public key in
question is also the key confirmation recipient. When assurance of current possession is obtained
in this fashion, the underlying key agreement scheme used shall be one of the following, and the
recipient seeking assurance shall serve in the indicated role(s):

• MQV2 or Full MQV, with the recipient serving as either the key agreement initiator
or responder.

• dhHybridOneFlow,(Cofactor) One-Pass Unified Model, MQV1 or One-Pass MQV,
with the recipient serving as the key agreement initiator.

• dhOneFlow or (Cofactor) One-Pass Diffie-Hellman, with the recipient serving as the
key agreement initiator.

See Sections 6 and 8 for details. Note that in all of the permitted cases, the key confirmation
recipient contributes (at least) an ephemeral public key that must be used in the provider's
computations.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 40

Explicit key confirmation (as described above) also provides assurance that the claimed owner is
the true owner, but may be used by the recipient even when the recipient has obtained
independent (current) assurance that the claimed owner of a static public key is indeed its true
owner. This is appropriate in situations where the recipient desires assurance that the owner is
currently in possession of the static private key (and that the owner is currently able to use it
correctly), or in cases where there is no access to a trusted party who can provide assurance of
the owner’s (previous) demonstration of private key possession.

5.6.3.2.2 Recipient Assurance from a Trusted Party
If the recipient of a static public key wishes to obtain assurance of the (true) owner’s possession
of the corresponding static private key from a trusted party (trusted by the recipient), then the
recipient shall obtain assurance in one (or more) of the following ways:

1. Trusted Provision: The recipient obtains assurance from a trusted party (trusted by the
recipient) that the trusted party has provided the static private key to its owner in a secure
manner and has received confirmation of receipt from the owner. Reliance on this method
requires that the owner and recipient trust that the provider of the static private key will
not masquerade as the owner.

2. Explicit Key Confirmation with a Trusted Party: The recipient obtains assurance from a
trusted party (trusted by the recipient) that the owner of the static public key has provided
the trusted party with evidence of the owner’s possession of the static private key through
explicit key confirmation (as described in Section 5.6.3.2.1 above), with the trusted party
in the role of recipient.

5.6.4 Key Pair Management

5.6.4.1 Common Requirements on Static and Ephemeral Key Pairs
The following are common requirements on static and ephemeral key pairs (see the
Recommendation for Key Management [7]):

1. A public/private key pair shall be correctly associated with its corresponding specific set
of domain parameters. Each key pair shall not be used with more than one set of domain
parameters.

2. Each DLC private key shall be unpredictable and created using an Approved key
generation method as specified in Section 5.6.1.

3. Private keys shall be protected from unauthorized access, disclosure, modification and
substitution.

4. Public keys shall be protected from unauthorized modification and substitution. This is
often accomplished by using public key certificates that have been signed by a certificate
authority (CA).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 41

5.6.4.2 Specific Requirements on Static Key Pairs
The specific requirements for static key pairs are as follows:

1. An entity’s static key pair shall be generated before knowledge of the other party’s
ephemeral key pair (if any) with which the static key pair will be used. Note: This
requirement is enforced during the generation of ephemeral keys (see Section 5.6.4.3).

2. A recipient of a static public key shall be assured of the data integrity and correct
association of (a) the public key, (b) the set of domain parameters for that key, and (c) the
identifier of the entity that owns the key pair (that is, the party with whom the recipient
intends to establish a key). This assurance is often provided by verifying a public-key
certificate that was signed by a trusted third party (for example, a CA), but may be
provided by direct distribution of the keying material from the owner, provided that the
recipient trusts the owner to do this.

4. A static key pair may be used in more than one key establishment scheme. However, one
static public/private key pair shall not be used for different purposes (for example, a
digital signature key pair shall not be used for key establishment or vice versa).

5. An owner and a recipient of a static public key shall have assurance of the validity of the
public key and each shall know the method(s) to obtain assurance. This assurance may be
provided, for example, through the use of a public key certificate if the CA provides
sufficient assurance of public key validity as part of its certification process. See Section
5.6.2.

6. An owner and a recipient of a static public key shall have assurance of the owner’s
possession of the associated private key. The owner shall know the method used to
obtain assurance of possession of the owner’s private key. The recipient shall know the
method used to provide assurance to the recipient of the owner’s possession of the private
key (see Section 5.6.3). This assurance may be provided, for example, through the use of
a public key certificate if the CA obtains sufficient assurance of possession as part of its
certification process. See Section 5.6.3.

5.6.4.3 Specific Requirements on Ephemeral Key Pairs
The specific requirements on ephemeral key pairs are as follows:

1. An ephemeral private key shall be used in exactly one key establishment transaction,
with one exception: an ephemeral private key may be used in multiple DLC Key
Transport transactions that are transporting identical secret keying material
simultaneously (or within a short period of time; see Section 7). After its use an
ephemeral private key shall be destroyed.

2. An ephemeral key pair should be generated as close to its time of use as possible. Ideally,
an ephemeral key pair is generated just before the ephemeral public key is transmitted.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 42

3. If using a scheme where the other party (B) uses a static key pair, an entity (A) shall be
assured that the entity’s (A’s) ephemeral public key was transmitted strictly after the
other party’s (B’s) static key pair was generated. This assurance can be provided by the
entity (A) actually possessing a copy of the other party’s (B’s) static public key before
generating its own (A’s) ephemeral key pair; another way to obtain this assurance is by
comparing the time of ephemeral key generation with a timestamp (certified by a trusted
third party) on the other party’s (B’s) static public key.

4. A recipient of an ephemeral public key shall have assurance of the validity of the public
key and shall know the method(s) used to obtain assurance of public key validity. See
Section 5.6.2.

5.7 DLC Primitives

A primitive is a relatively simple operation that is defined to facilitate implementation in
hardware or in a software subroutine. Each key establishment scheme shall use exactly one
primitive. Each scheme in Section 6 shall use an appropriate primitive from the following list:

1. The FFC DH primitive (Section 5.7.1.1 of this Recommendation): This primitive shall be
used by the dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes,
which are based on finite field cryptography and the Diffie-Hellman algorithm.

2. The ECC CDH primitive (Section 5.7.1.2 of this Recommendation and called the
Modified Diffie-Hellman primitive in ANS X9.63): This primitive shall be used by the
Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass
Diffie-Hellman and Static Unified Model schemes, which are based on elliptic curve
cryptography and the Diffie-Hellman algorithm.

3. The FFC MQV primitive (Section 5.7.2.1 of this Recommendation): This primitive shall
be used by the MQV2 and MQV1 schemes, which are based on finite field cryptography
and the MQV algorithm.

4. The ECC MQV primitive (Section 5.7.2.2 of this Recommendation): This primitive shall
be used by the Full MQV and One-Pass MQV schemes, which are based on elliptic curve
cryptography and the MQV algorithm.

The shared secret shall be used as input to a key derivation function (see Section 5.8).

5.7.1 Diffie-Hellman Primitives

5.7.1.1 Finite Field Cryptography Diffie -Hellman (FFC DH) Primitive
The shared secret Z is computed using the domain parameters (p, q, g{, SEED, pgenCounter}),
the other party’s public key and one’s own private key. This primitive is used in Section 6 by the
dhHybrid1, dhEphem, dhHybridOneFlow, dhOneFlow and dhStatic schemes. Assume that the
party performing the computation is party A, and the other party is party B. Note that party A
could be either the initiator U or the responder V.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 43

Input:
1. (p, q, g{, SEED, pgenCounter}): Domain parameters,

2. xA : One’s own private key, and

3. yB : The other party’s public key.

Process:

1. pyZ Ax
B mod=

2. If Z=1, output “Failure”.

3. Else, output Z.

Output: The shared secret Z or “Failure”.

5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive
The shared secret Z is computed using the domain parameters (q, FR, a, b{, SEED}, G, n, h), the
other party’s public key, and one’s own private key. This primitive is used in Section 6 by the
Full Unified Model, Ephemeral Unified Model, One-Pass Unified Model, One-Pass Diffie-
Hellman and Static Unified Model schemes. Assume that the party performing the computation
is party A, and the other party is party B. Note that party A could be either the initiator U or the
responder V.
Input:

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters,
2. dA : One’s own private key, and

3. QB : The other party’s public key.

Process:
1. Compute the point P = hdAQB.

2. If P = O, output “Failure”.

3. Z = x where xP is the x-coordinate of P.

Output: The shared secret Z or “Failure”.

5.7.2 MQV Primitives

5.7.2.1 Finite Field Cryptography MQV (FFC MQV) Primitive
The shared secret Z is computed using the domain parameters (p, q, g{, SEED, pgenCounter}),
the other party’s public keys and one’s own public and private keys. Assume that the party
performing the computation is party A, and the other party is party B. Note that party A could be
either the initiator U or the responder V.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 44

Input:
1. (p, q, g{, SEED, pgenCounter}): Domain parameters,

2. xA : One’s own static private key,

3. yB : The other party’s static public key,

4. rA : One’s own second private key, 3

5. tA : One’s own second public key, 4 and

6. tB : The other party’s second public key. 5

Process:

1. 2/qw = .

2. ww
AA tT 2)2mod(+= .

3. qxTrS AAAA mod)(+= .

4. ww
BB tT 2)2mod(+= .

5. pytZ AB ST
BB mod)))(((= .

6. If Z = 1, output “Failure”. Else, output Z.

Output: The shared secret Z or “Failure”.

5.7.2.1.1 MQV2 Form of the FFC MQV Primitive
This form of invoking the FFC MQV primitive is used in Section 6.1.1.3 by the MQV2 scheme.
In this form, each party has both a static key pair and an ephemeral key pair. Assume that the
party performing the computation is party A, and the other party is party B. Note that party A
could be either the initiator U or the responder V.

In this form, one’s own second private and public keys (input 4 and 5 in Section 5.7.2.1) are
one’s own ephemeral private and pub lic keys (rA and tA), and the other party’s second public key
(input 6 in Section 5.7.2.1) is the other party’s ephemeral public key (tB).

3 In the FFC MQV primitive, a second key may be either ephemeral or static, depending on which form is being
used, see Sections 5.7.2.1.1 and 5.7.2.1.2.

4 In the FFC MQV primitive, a second key may be either ephemeral or static, depending on which form is being
used, see Sections 5.7.2.1.1 and 5.7.2.1.2.

5 In the FFC MQV primitive, a second key may be either ephemeral or static, depending on which form is being
used, see Sections 5.7.2.1.1 and 5.7.2.1.2.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 45

5.7.2.1.2 MQV1 Form of the FFC MQV Primitive
This form of invoking the FFC MQV primitive is used in Section 6.2.1.3 by the MQV1 scheme.
In this form, the initiator has a static key pair and an ephemeral key pair, but the responder has
only a static key pair. One-Pass MQV is done using the MQV primitive by using the responder’s
static key pair as the responder’s second key pair (as the responder has no ephemeral key pair).

The initiator uses the responder’s static public key for the responder’s second public key; that is,
when the initiator uses the algorithm in Section 5.7.2.1, input 6 becomes the other party’s static
public key (yA).

The responder uses his static private key for his second private key; that is, when the responder
uses the algorithm in Section 5.7.2.1, input 4 becomes the responder’s static private key xA, and
input 5 becomes the responder’s static public key (yA).

5.7.2.2 ECC MQV Associate Value Function
The associate value function is used by the ECC MQV family of key agreement schemes to
compute an integer that is associated with an elliptic curve point. This Recommendation defines
avf(Q) to be the associate value function of a public key P using the domain parameters (q, FR,
a, b{, SEED}, G, n, h).
Input:

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters, and
2. Q: A public key (that is, a point on the subgroup not equal to the point at infinity).

Process:
1. Convert xQ to an integer xqi using the convention specified in Appendix C.3.

2. Calculate

xqm = xqi mod 2/2 f (where f = n2log).

3. Calculate the associate value function

avf(Q) = xqm + 2/2 f .

Output: avf(Q), the associate value of Q.

5.7.2.3 Elliptic Curve Cryptography MQV (ECC MQV) Primitive
The ECC MQV primitive is computed using the domain parameters (q, FR, a, b{, SEED}, G, n,
h), the other party’s public keys, and one’s own public and private keys. The ECC version of
MQV uses the cofactor h in its calculations. Assume that the party performing the computation is
party A, and the other party is party B. Note that party A could be either the scheme initiator U
or the scheme responder V.
Input:

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 46

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters,
2. ds,A : One’s own static private key,

3. Qs,B : The other party’s static public key,

4. de,A : One’s own second private key, 6

5. Qe,A : One’s own second public key, 7 and

6. Qe,B : The other party’s second public key. 8

Process:
1. implicitsigA = (de,A + avf(Qe,A)ds,A) mod n.

2. P = h(implicitsigA)(Qe,B + avf(Qe,B)Qs,B)).

3. If P = O, output “Failure”.

4. Z=xP, where xP is the x-coordinate of P.

Output: Z or “Failure”.

5.7.2.3.1 Full MQV Form of the ECC MQV Primitive
This form of invoking the FFC MQV primitive is used in Section 6.1.1.4 by the Full MQV
scheme. In this form, each party has both a static key pair and an ephemeral key pair. Assume
that the party performing the computation is party A, and the other party is party B. Note that
party A could be either the initiator U or the responder V.

In this form, one’s own second private and public keys (input 4 and 5 in Section 5.7.2.3) are
one’s own ephemeral private and public keys (de,A and Qe,A), and the other party’s second public
key (input 6 in Section 5.7.2.3) is the other party’s ephemeral public key (Qe,B).

5.7.2.3.2 One-Pass Form of the ECC MQV Primitive
This form of invoking the ECC MQV primitive is used in Section 6.2.1.4 by the One-Pass MQV
scheme. In this form, the initiator has a static key pair and an ephemeral key pair, but the
responder has only a static key pair. One-Pass MQV is done using the MQV primitive with the

6 In the ECC MQV primitive, a second key may be either ephemeral or static, depending on which form is being
used, see Sections 5.7.2.3.1 and 5.7.2.3.2.

7 In the ECC MQV primitive, a second key may be either ephemeral or static, depending on which form is being
used, see Sections 5.7.2.3.1 and 5.7.2.3.2.

8 In the ECC MQV primitive, a second key may be either ephemeral or static, depending on which form is being
used, see Sections 5.7.2.3.1 and 5.7.2.3.2.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 47

responder’s static key pair as the responder’s second key pair (as the responder has no ephemeral
keys).

The initiator uses the responder’s static public key as the responder’s second public key. When
the initiator uses the algorithm in Section 5.7.2.3, input 6 becomes the other party’s static public
key (Qs,B).

The responder uses his static private key as his second private key. When the responder uses the
algorithm in Section 5.7.2.3, input 4 becomes the responder’s static private key ds,A, and input 5
becomes the responder’s static public key (Qs,A).

5.8 Key Derivation Functions

An Approved key derivation function (KDF) shall be used to derive secret keying material from
a shared secret. The output from a KDF shall only be used for secret keying material, such as a
symmetric key used for data encryption or message integr ity, a secret initialization vector, etc.
Non-secret keying material (such as a non-secret initialization vector) shall not be generated
using the shared secret.

The shared secret shall be used in only one call to the KDF and shall be destroyed (zeroized)
immediately following its use. The derived secret keying material shall be computed in its
entirety before outputting any portion of it.

The derived secret keying material may be parsed into one or more keys or other secret
cryptographic keying material (for example, secret initialization vectors). If Key Confirmation
(KC) or information validation testing are to be performed as specified in Section 8, then the
MAC key shall be formed from the first bits of the KDF output and zeroized after its use (i.e., it
shall not be used for purposes other than key confirmation or information validation testing).

This section specifies several Approved KDFs for use in key establishment. The preferred
method is provided in Section 5.8.1. The other methods are provided for backward compatibility
(see Sections 5.8.2 - 5.8.5). As this is an active area of research, it is possible that more methods
will be added in the future. Any new methods should be consistent with the conceptual KDF
template specified in Appendix B1. The hash function used in a KDF shall be Approved (see
Section 5.1 and 5.5 for the selection of an appropriate hash function) unless otherwise specified
herein.

5.8.1 Concatenation Key Derivation Function (Preferred)
This section specifies the preferred key derivation function, based on concatenation.

The Concatenation KDF is as follows:

Function call: kdf (Z, OtherInput),

where OtherInput is contextID, keydatalen {and SharedInfo}.

Fixed Value (implementation dependent):

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 48

1. hashlen: an integer equal to the length (in bits) of the output block of the hash function
used to derive blocks of secret keying material.

Auxiliary Function:
1. H: an Approved hash function.

Input:
1. Z: a byte string that is the shared secret.

2. contextID: If IDU and IDV are fixed- length bit strings that denote the identifiers of the
participating parties, then contextID consists of IDU || IDV. Otherwise, contextID has the
form:

IDlenU || IDU || IDlenV || IDV

where IDU and IDV are variable- length strings (of eight bit bytes) that serve as the
identifiers of the participating parties, while IDLenU and IDlenV are fixed- length bit
strings that indicate the length (in bytes) of IDU and IDV, respectively. A protocol that
uses the Concatenation KDF shall specify which of the two contextID forms will be used,
and shall also specify the lengths for the fixed- length quantities. See the notes below for
more information on identifiers.

3. keydatalen: An integer that is the length in bits of the secret keying material to be
generated; keydatalen shall be less than or equal to hashlen × (232 −1).

4. SharedInfo (optional): A bit string that consists of the concatenation of a (protocol-
specific) sequence of substrings of data shared by the parties generating the secret keying
material. A given substring is either a fixed- length bit string or has the form Datalen ||
Data, where Data is a variable length string (of eight bit bytes), and Datalen is a fixed-
length string that indicates the length (in bytes) of Data. For each substring of
SharedInfo, a protocol using the Concatenation KDF shall specify which of these two
data representations is used. The protocol shall also specify the lengths for all fixed-
length quantities.

Process:

1. reps = keydatalen / hashlen.

2. If reps > (232 −1), then ABORT: output “Invalid” and stop.

3. Initialize a 32-bit, big-endian bit string counter as 0000000116.

4. For i = 1 to reps by 1, do the following:

4.1 Compute Hashi = H(counter || Z || contextID { || SharedInfo }).

4.2 Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 49

5. Let Hhash be set to Hashreps if (keydatalen ⁄ hashlen) is an integer; otherwise, let Hhash
be set to the (keydatalen mod hashlen) leftmost bits of Hashreps.

6. Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashreps-1 || Hhash.

Output:
The bit string DerivedKeyingMaterial of length keydatalen bits (or “Invalid”).
Any scheme attempting to call this key derivation function with keydatalen greater than
or equal to hashlen × (232 −1) shall output “Invalid” and stop
without outputting DerivedKeyingMaterial.

Notes:
1. Each of the bit strings IDU and IDV is an identifier (that is, a bit string that is associated

with a person, device or organization). An identifier may be an identifying name or may
be something more abstract (for example, an IP address and timestamp), depending on
the application. The values for IDU and IDV should be as specific as feasible for their
intended use, and each shall be represented in a protocol-specific format.

2. Party U shall be the initiator, and party V shall be the responder, as assigned by the
protocol.

3. The value of Hashi in 4.1 above is preferred and should be computed as shown; however,
for compatibility with ANS X9.42-2001 [10] and ANS X9.63-2001 [12], the following
variation is allowed (upon mutual agreement of parties U and V):

Hashi = H(Z || counter || contextID { || SharedInfo }).

The relationship between the Concatenation KDF and the KDF template in Appendix B.1 is
described in Appendix B.2.

5.8.2 ASN.1 Key Derivation Function
This section specifies an allowed key derivation function based on ASN.1 DER encoding. It may
be used if both communicating parties agree on its use.

The ASN.1 KDF is as follows:

Function call: kdf (Z, OtherInput)

where OtherInput is keydatalen and OtherInfo.

Fixed Values (implementation dependent):

1. hashlen: an integer equal to the length (in bits) of the output of the hash function used to
derive blocks of secret keying material.

2. max_hash_inputlen: an integer equal to the maximum length (in bits) of the bit string(s)
input to the hash function.

Auxiliary Function:

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 50

1. H: an Approved hash function.

Input:
1. Z: a byte string that is the shared secret.

2. keydatalen: An integer that is the length (in bits) of the secret keying material to be
generated; keydatalen shall be less than or equal to hashlen × (232 –1).

3. OtherInfo: A bit string specified in ASN.1 DER encoding, which consists of the
following information:

3.1 Key specification information consisting of:

3.1.2 AlgorithmID: A unique object identifier that indicates the algorithm(s) for
which the derived secret keying material will be used. For example,
AlgorithmID might indicate that bits 1-128 are to be used as a 128-bit AES
key and that bits 129-208 are to be used as an 80-bit HMAC key.)

3.1.3 counter: A 32-bit byte string (that is, a four byte string) with initial value
0000000116. This counter might be incremented during the key derivation
process (treating it as the low-order 32 bits of an unsigned integer).

3.2 PartyUInfo: A bit string that contains public information contributed by the
initiator. At a minimum, PartyUInfo shall include IDU, the identifier of party U;
PartyUInfo may also contain other data contributed by the initiator. See the notes
below.

3.3 PartyVInfo: A bit string that contains public information that was contributed by the
recipient. At a minimum, PartyVInfo shall include IDV, the identifier of party V;
PartyVInfo may also contain other data contributed by the recipient. See the notes
below.

3.4 (Optional) SuppPrivInfo: A bit string that contains some additional, mutually-
known private information (for example, a shared secret symmetric key that has
been communicated through a separate channel).

3.5 (Optional) SuppPubInfo: A bit string that contains some additional, mutually-
known public information.

The information referred to above may be specified by protocols using this KDF or may
be made mutually known by other means. Note that the value of OtherInfo is different
during each iteration of the loop in step 5 of the process described below, due to the
changing value of counter.

Process:
1. Let reps = keydatalen / hashlen.

2. If reps > (232 −1), then ABORT: output “Invalid” and stop.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 51

3. Set counter = 0000000116 (and update OtherInfo accordingly).

4. If OtherInfo || Z is more than max_hash_inputlen bits long,
then ABORT: output “Invalid” and stop.

5. For i = 1 to reps by 1, do the following:

5.1 Compute hi = H(OtherInfo || Z).

5.2 Convert counter to an unsigned, 32-bit integer.

5.3 Increment counter (modulo 232).

5.4 Convert counter to a 32-bit byte string (and update OtherInfo accordingly).

6. Compute DerivedKeyingMaterial = leftmost keydatalen bits of h1 || h2 || … || hreps.

Output:
The DerivedKeyingMaterial as a bit string of length keydatalen bits (or “Invalid”). The
ASN.1 KDF produces secret keying material that is at most hashlen × (232 –1) bits in
length. Any call to this key derivation function using a keydatalen value that is greater
than hashlen × (232–1) shall cause the KDF to output “invalid” and stop without
outputting DerivedKeyingMaterial. Similarly, it is assumed that the key derivation
function calls do not involve hashing a bit string that is more than max_hash_inputlen
bits in length. Any call to the key derivation function involving a bit string OtherInfo || Z
that is greater than max_hash_inputlen bits long shall cause the KDF to output “Invalid”
and stop without outputting DerivedKeyingMaterial.

Notes:

1. Each of the bit strings IDU and IDV is an identifier (that is, a bit string that is associated
with a person, device or organization). An identifier may be an identifying name or may
be something more abstract (for example, an IP address and a timestamp), depending on
the application. The values for IDU and IDV should be as specific as feasible for their
intended use.

3. Party U shall be the initiator, and party V shall be the responder, as assigned by the
protocol.

4. The value of hi in 5.1 above should be computed as shown; however, for compatibility
with ANS X9.42-2001 [10], the following variation is allowed (upon mutual agreement
of parties U and V): hi = H(Z || OtherInfo).

The relationship between the ASN.1 KDF and the KDF template in Appendix B.1 is described in
Appendix B.3.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 52

5.8.3 IKEv2 Key Derivation
Key derivation based on the pseudorandom function (PRF) in IKEv2 is allowed for the purpose
of establishing keying material for an IKEv2 security association — with certain restrictions. The
PRF shall employ the HMAC specified in FIPS 198 (based on an Approved hash function) and
the shared secret (denoted “g^ir” in the IKEv2 documentation) shall be destroyed (zeroized)
immediately following its use as input to the PRF. The IKEv2 key derivation process is
described in [16]. Additional details, including a mapping to the KDF template in Appendix B.1,
are provided in Appendix B.4

5.8.4 TLS Key Derivation
Key derivation based on the pseudorandom function in TLS is allowed for the purpose of
establishing keying material (in particular, the master secret) for a TLS session. This process is
described in RFC 2246 [14] and shall be restricted to the parameter sets FA and EA from Table
1 and Table 2 of Section 5.5 of this Recommendation. All traces of the pre_master_secret shall
be destroyed immediately following the derivation of the master secret. The use of MD5 is
allowed in TLS key derivation only; MD5 shall not be used as a general hash function. The
maximum number of blocks of secret keying material that can be produced by repeated use of
the pseudorandom function during a single call to the TLS key derivation function shall be 232-1.

Additional details, including a mapping to the KDF template in Appendix B.1, are provided in
Appendix B.5.

6. Key Agreement

This Recommendation provides three categories of key agreement schemes (See Table 3). The
classification of the categories is based on the number of ephemeral keys used by the two parties
to the key agreement process, parties U and V. In category C(i), parties U and V have a total of i
ephemeral key pairs. The first category, C(2), consists of schemes requiring the generation of
ephemeral key pairs by both parties; a C(2) scheme is suitable for an interactive key
establishment protocol. The second category, C(1), consists of schemes requiring the generation
of an ephemeral key pair by only one party; a C(1) scheme is suitable for a store and forward
scenario, but may also be used in an interactive key establishment protocol. The third category,
C(0), consists of schemes that do not use ephemeral keys.

Key confirmation may be added to many of these schemes to provide assurance that the
participants share the same keying material; see Section 8 for details on key confirmation. Each
party should have such assurance. Although other methods are often used to provide this
assurance, this Recommendation makes no statement as to the adequacy of these other methods.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 53

Table 3: Key Agreement Scheme Categories

Category Comment

C(2): Two ephemeral key pairs Each party generates an ephemeral key pair.

C(1): One ephemeral key pair Only the initiator generates an ephemeral key pair.

C(0): Zero ephemeral key pairs No ephemeral keys are used.

Each category is comprised of one or more subcategories that are classified by the use of static
keys by the parties (see Table 4). In subcategory C(i,j), parties U and V have a total of i
ephemeral key pairs and j static key pairs.

Table 4: Key Agreement Scheme Subcategories

Category Subcategory

C(2, 2): Each party generates an ephemeral key pair and has a
static key pair.

C(2): Two ephemeral key
pairs

 C(2, 0): Each party generates an ephemeral key pair; no static
key pairs are used.

C(1, 2): The initiator generates an ephemeral key pair and has a
static key pair; the responder has only a static key pair.

C(1): One ephemeral key pair

C(1, 1): The initiator generates an ephemeral key pair, but has no
static key pair; the responder has only a static key pair.

C(0): Zero ephemeral key
pairs

C(0, 2): Each party has only static key pairs.

The schemes may be further classified by whether they use finite field cryptography (FFC) as
specified in ANS X9.42 or elliptic curve cryptography (ECC) as specified in ANS X9.63. A
scheme may use either Diffie-Hellman or MQV primitives (see Section 5.7). Thus, for example,
C(2,2,FFC DH) completely classifies the dhHybrid1 scheme of Section 6.1.1.1 as a scheme with
two ephemeral keys and two static keys that uses finite field cryptography and a Diffie-Hellman
primitive (see Table 5).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 54

Table 5: Key Agreement Schemes

Category Subcategory Primitive Scheme Full Classification

C(2) C(2, 2) FFC DH dhHybrid1 C(2, 2, FFC DH)

C(2) C(2, 2) ECC CDH (Cofactor) Full Unified Model C(2, 2, ECC CDH)

C(2) C(2, 2) FFC MQV MQV2 C(2, 2, FFC MQV)

C(2) C(2, 2) ECC MQV Full MQV C(2, 2, ECC MQV)

C(2) C(2, 0) FFC DH dhEphem C(2, 0, FFC DH)

C(2) C(2, 0) ECC CDH (Cofactor) Ephemeral Unified
Model

C(2, 0, ECC CDH)

C(1) C(1, 2) FFC DH dhHybridOneFlow C(1, 2, FFC DH)

C(1) C(1, 2) ECC CDH (Cofactor) One-Pass Unified
Model

C(1, 2, ECC CDH)

C(1) C(1, 2) FFC MQV MQV1 C(1, 2, FFC MQV)

C(1) C(1, 2) ECC MQV One-Pass MQV C(1, 2, ECC MQV)

C(1) C(1, 1) FFC DH dhOneFlow C(1, 1, FFC DH)

C(1) C(1, 1) ECC CDH (Cofactor) One-Pass Diffie-
Hellman

C(1, 1, ECC CDH)

C(0) C(0, 2) FFC DH dhStatic C(0, 2, FFC DH)

C(0) C(0, 2) ECC CDH Cofactor Static Unified Model C(0, 2, ECC CDH)

Each party in a key agreement process shall use the same set of valid domain parameters. These
parameters shall be established and validated prior to the initiation of the key agreement process.
See Section 5.5 for a discussion of domain parameters.

A general flow diagram is provided for each subcategory of schemes. The dotted- line arrows
represent the distribution of static public keys that may be distributed by the parties themselves
or by a third party, such as a Certification Authority (CA). The solid- line arrows represent the

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 55

distribution of ephemeral public keys that occur during the key agreement process. Note that the
flow diagrams in this Recommendation omit explicit mention of various validation checks that
are required. The flow diagrams and descriptions in this Recommendation assume a successful
completion of the key establishment process.

Rationale for selecting schemes for each subcategory, C(i , j), is included. These rationale
sections will provide the user or developer with additional information to help make a choice as
to which key establishment scheme to use. The rationale includes discussions of the security
properties for the schemes. In general, the security properties for each scheme within a
subcategory are the same; when this is not the case, the exceptions are identified. See Section
6.1.1.5 specifically. These rationale sections do not contain an in-depth discussion of all possible
security properties of all schemes. For further discussion, see ANS X9.42 and ANS X9.63. Note
that the specific security properties achieved depend on whether a static key is used, whether an
ephemeral key is used, the specific method of calculating the shared secret, and the key
confirmation method used, if any.

It is important that a scheme not be chosen based solely on the number of security properties it
possesses. Rather, a scheme should be selected based on how well the scheme fulfills the system
requirements. For instance, in a bandwidth-constrained system, a scheme with fewer passes per-
exchange might be preferable to a scheme with more passes and more security properties.

It is also important to understand that a scheme may be a component of a protocol, which in turn
provides additional security properties not provided by the scheme when considered by itself.
Note that protocols, per se, are not specified in this Recommendation.

6.1 Schemes Using Two Ephemeral Key Pairs, C(2)

In this category, each party generates an ephemeral key pair and sends the ephemeral public key
to the other party. The two parties perform similar computations to derive their shared secret;
however, the key derivation calculation (see Section 5.8) and the key confirmation calculation (if
used - see Section 8) differ for the initiator and responder.

This category consists of two subcategories that are determined by the use of static keys by the
parties. In the first subcategory, each party has both static and ephemeral keys (see Section
6.1.1), while in the second subcategory, each party has only ephemeral keys (see Section 6.1.2).

6.1.1 Each Party Has a Static Key Pair and Generates an Ephemeral Key Pair,
C(2, 2)

For these schemes, each party (U and V) has a static key pair and generates an ephemeral key
pair during the key agreement process. All key pairs shall be generated using the same domain
parameters. Party U and party V obtain each other’s static public keys, which have been
generated prior to the key establishment process. Both parties generate ephemeral private/public
key pairs and exchange the ephemeral public keys. Using the static and ephemeral keys, both
parties generate a shared secret. The shared secret keying material is derived from the shared
secret (see Figure 4).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 56

Figure 4: General Protocol when Each Party Generates Both Static and Ephemeral Key
Pairs

Prerequisites: The following are prerequisites for the use of all C(2,2) schemes.

1. Each party shall have an authentic copy of the same set of domain parameters, D. These
parameters shall have been generated as specified in Section 5.5.1. For FFC schemes, D
= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h).
Furthermore, each party shall have assurance of the validity of these domain parameters
as specified in Section 5.5.2.

2. Each party shall have been designated as the owner of a static key pair that was generated
as specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, the
static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party shall
obtain assurance of the validity of its own static public key as specified in Section
5.6.2.1. Each party shall obtain assurance of its possession of the correct value for its
own private key as specified in Section 5.6.3.1.

3. The parties shall have agreed upon an Approved key derivation function (see Section 5.8)
and an appropriate Approved hash function for use with the key derivation function (see
Section 5.5).

4. Prior to or during the key agreement process, each party shall obtain the static public key
that is bound to an identifier claimed by (or associated with) the other party. These static
public keys shall be obtained in a trusted manner (e.g., from a certificate signed by a

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 57

trusted CA). Each party shall obtain assurance of the validity of the other party’s static
public key as specified in Section 5.6.2.2

The following is a prerequisite for using the derived keying material for purposes beyond the
C(2,2) scheme itself.

The recipient of a static public key shall obtain assurance that its owner is (or was) in
possession of the appropriate static private key, as specified in Section 5.6.3.2. This
assurance shall be obtained either through explicit key confirmation incorporated into the
key agreement scheme, as specified in Section 5.6.3.2.1, or from a trusted party, as
specified in Section 5.6.3.2.2. Assurance from a trusted party may be obtained prior to
employing a particular C(2,2) scheme.

 6.1.1.1 dhHybrid1, C(2, 2, FFC DH)
This section describes the dhHybrid1 scheme from ANS X9.42. The prerequisites for this
scheme shall be satisfied as specified in Section 6.1.1. In particular, party U shall obtain the
static public key yV of party V, and party V shall obtain the static public key yU of party U.

With the exception of key derivation, dhHybrid1 is “symmetric” in the actions of parties U (the
initiator) and V (the responder). Only the actions performed by party U are specified here; a
specification of the actions performed by party V may be obtained by systematically replacing
the symbol “U” by “V” (and vice versa) in the description of the key agreement transformation.
Note, however, that U and V must use identical orderings of the bit strings that are input to the
key derivation function; for example, if the Concatenation Key Derivation Function is employed
(see Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in
Section 5.6.1. Send the public key tU to V. Receive an ephemeral public key tV
(purportedly) from V. If tV is not received, output “Invalid” and stop.

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. If
assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs – an integer in
the range [2 to p-1] – from the set of domain parameters D, U’s static private key xU, and
V’s static public key yV. Convert Zs to a byte string (which is also denoted by Zs) using
the Integer-to-Byte-String Conversion specified in Appendix C.1, and then destroy (i.e.,
zeroize) the results of all intermediate calculations used in the computation of Zs. If the
call to the FFC DH primitive outputs “Failure”, destroy the results of all intermediate
calculations used in the attempted computation of Zs, output “Failure”, and stop.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 58

4. Use the FCC DH primitive to derive a shared secret Ze – another integer in the range [2 to
p-1] – from the set of domain parameters D, U’s ephemeral private key rU, and V’s
ephemeral public key tV. Convert Ze to a byte string (which is also denoted by Ze) using
the Integer-to-Byte-String Conversion specified in Appendix C.1, and then destroy (i.e.,
zeroize) the results of all intermediate calculations used in the computation of Ze. If this
call to the FFC DH primitive outputs “Failure”, destroy Zs and the results of all
intermediate calculations used in the attempted computation of Ze, output “Failure”, and
stop.

5. Compute the shared secret Z = Ze || Zs. Destroy the results of all intermediate calculations
used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

dhHybrid1 is summarized in Table 6.

Table 6: dhHybrid1 Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

D = (p, q, g{, SEED, pgenCounter})

D = (p, q, g{, SEED, pgenCounter})

Static Data

1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 59

 Party U Party V

Computation Compute Zs by calling FFC DH
using xU and yV

Compute Ze by calling FFC DH
using rU and tV

Compute Z = Ze || Zs

Compute Zs by calling FFC DH
using xV and yU

Compute Ze by calling FFC DH
using rV and tU

Compute Z = Ze || Zs

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.1.1.2 Full Unified Model, C(2, 2, ECC CDH)
This section describes the Full Unified Model scheme from ANS X9.63. The prerequisites for
this scheme shall be satisfied as specified in Section 6.1.1. In particular, party U shall obtain the
static public key Qs,V of party V, and party V shall obtain the static public key Qs,U of party U.

With the exception of key derivation, Full Unified Model is “symmetric” in the actions of parties
U (the initiator) and V (the responder). Only the actions performed by party U are specified here;
a specification of the actions performed by party V may be obtained by systematically replacing
the symbol “U” by “V” (and vice versa) in the description of the key agreement transformation.
Note, however, that U and V must use identical orderings of the bit strings that are input to the
key derivation function; for example, if the Concatenation Key Derivation Function is employed
(see Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in
Section 5.6.1. Send the public key Qe,U to V. Receive an ephemeral public key Qe,V
(purportedly) from V. If Qe,V is not received, output “Invalid” and stop.

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 5.6.2.3.
If assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs – an element
of the finite field of size q – from the set of domain parameters D, U’s static private key
ds,U, and V’s static public key Qs,V. Convert Zs to a byte string (which is also denoted by
Zs) using the Field-element-to-Byte-String Conversion specified in Appendix C.2, and
then destroy (i.e., zeroize) the results of all intermediate calculations used in the
computation of Zs. If the call to the ECC CDH primitive outputs “Failure”, destroy (i.e.,

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 60

zeroize) the results of all intermediate calculations used in the attempted computation of
Zs, output “Failure”, and stop.

4. Use the ECC CDH primitive to derive a shared secret Ze – another element of the finite
field of size q – from the set of domain parameters D, U’s ephemeral private key de,U, and
V’s ephemeral public key Qe,V. Convert Ze to a byte string (which is also denoted by Ze)
using the Field-element-to-Byte-String Conversion specified in Appendix C.2, and then
destroy the results of all intermediate calculations used in the computation of Ze. If this
call to the ECC CDH primitive outputs “Failure”, destroy Zs and the results of all
intermediate calculations used in the attempted computation of Ze, output “Failure”, and
stop.

5. Compute the shared secret Z = Ze || Zs. Destroy the results of all intermediate calculations
used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

The Full Unified Model is summarized in Table 7.

Table 7: Full Unified Model Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

D = (q, FR, a, b{, SEED}, G, n, h) D = (q, FR, a, b{, SEED}, G, n, h)

Static Data

1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 61

 Party U Party V

Computation Compute Zs by calling ECC CDH
using ds,U and Qs,V

Compute Ze by calling ECC CDH
using de,U and Qe,V

Compute Z = Ze || Zs

Compute Zs by calling ECC CDH
using ds,V and Qs,U

Compute Ze by calling ECC CDH
using de,V and Qe,U

Compute Z = Ze || Zs

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.1.1.3 MQV2, C(2, 2, FFC MQV)
This section describes the MQV2 scheme from ANS X9.42. The prerequisites for this scheme
shall be satisfied as specified in Section 6.1.1. In particular, party U shall obtain the static public
key yV of party V, and party V shall obtain the static public key yU of party U.

With the exception of key derivation, MQV2 is “symmetric” in the actions of parties U (the
initiator) and V (the responder). Only the actions performed by party U are specified here; a
specification of the actions performed by party V may be obtained by systematically replacing
the symbol “U” by “V” (and vice versa) in the description of the key agreement transformation.
Note, however, that U and V must use identical orderings of the bit strings that are input to the
key derivation function; for example, if the Concatenation Key Derivation Function is employed
(see Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying materia l as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in
Section 5.6.5. Send the public key tU to V. Receive an ephemeral public key tV
(purportedly) from V. If tV is not received, output “Invalid” and stop.

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. If
assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the MQV2 form of the FFC MQV primitive in Section 5.7.2.1 to derive a shared
secret Z – an integer in the range [2 to p-1] – from the set of domain parameters D, U’s
static private key xU, V’s static public key yV, U’s ephemeral private key rU, U’s
ephemeral public key tU, and V’s ephemeral public key tV. If the call to the FFC MQV
primitive outputs “Failure”, destroy (i.e., zeroize) the results of all intermediate
calculations used in the attempted computation of Z, output “Failure”, and stop.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 62

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

MQV2 is summarized in Table 8.

Table 8: MQV2 Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

D =(p, q, g{, SEED, pgenCounter}) D =(p, q, g{, SEED, pgenCounter})

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Computation Compute Z by calling FFC MQV
using xU, yV, rU, tU, and tV

Compute Z by calling FFC MQV
using xV, yU, rV, tV, and tU

Derive Secret
Keying Material

Compute kdf(Z, OtherInput) Compute kdf(Z, OtherInput)

6.1.1.4 Full MQV, C(2, 2, ECC MQV)
This section describes the Full MQV scheme from ANS X9.63. The prerequisites for this scheme
shall be satisfied as specified in Section 6.1.1. In particular, party U shall obtain the static public
key Qs,V of party V, and party V shall obtain the static public key Qs,U of party U.

With the exception of key derivation, the Full MQV scheme is “symmetric” in the actions of
parties U (the initiator) and V (the responder). Only the actions performed by party U are

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 63

specified here; a specification of the actions performed by party V may be obtained by
systematically replacing the symbol “U” by “V” (and vice versa) in the description of the key
agreement transformation. Note, however, that U and V must use identical orderings of the bit
strings that are input to the key derivation function; for example, if the Concatenation Key
Derivation Function is employed (see Section 5.8.1), then in each party’s computation of keying
material, the identifier for U must precede the identifier for V when forming the contextID.

Party U shall execute the following transformation to a) establish a shared secret value Z with
party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in
Section 5.6.5. Send the public key Qe,U to V. Receive an ephemeral public key Qe,V
(purportedly) from V. If Qe,V is not received, output “Invalid” and stop.

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 5.6.2.3.
If assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the Full MQV form of the ECC MQV primitive in Section 5.7.2.3 to derive a shared
secret value Z – an element of the finite field of size q – from the set of domain
parameters D, U’s static private key ds,U, V’s static public key Qs,V, U’s ephemeral private
key de,U, U’s ephemeral public key Qe,U, and V’s ephemeral public key Qe,V. If the call to
the ECC MQV primitive outputs “Failure”, destroy (i.e., zeroize) the results of all
intermediate calculations used in the attempted computation of Z, output “Failure”, and
stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

The Full MQV is summarized in Table 9.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 64

Table 9: Full MQV Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

D = (q, FR, a, b{, SEED}, G, n, h) D = (q, FR, a, b{, SEED}, G, n, h)

Static Data

1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Computation Compute Z by calling ECC MQV
using ds,U, Qs,V, de,U, Qe,U, and Qe,V

Compute Z by calling ECC MQV
using ds,V, Qs,U, de,V, Qe,V, and Qe,U

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.1.1.5 Rationale for Choosing a C(2, 2) Scheme
Since these schemes use two static keys, each party has assurance that no unintended party can
compute the shared secret without the compromise of a static private key.

Since these schemes use two ephemeral keys, each party has assurance that the shared secret
varies from one key establishment transaction to the next. Even if both static and ephemeral
private keys of one party from one transaction are compromised, the shared secrets from other
legitimate C(2,2) transactions (that is, between honest parties) are still protected by the use of
different ephemeral private keys.

Key confirmation can be provided in either or both directions for these schemes using the
methods specified in Sections 8.4.1, 8.4.2, and 8.4.3. Upon completion of a Key Confirmation as
in Section 8, the recipient of the confirmation has assurance of the identifier of the key
confirmation provider (through the identifier bound to the static key), as well as confirmation of
the active participation of the provider.

For a given set of FFC domain parameters, MQV2 is expected to have better performance than
dhHybrid1.

For a given set of ECC domain parameters, Full MQV is expected to have better performance
than the Full Unified Model.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 65

The MQV schemes (MQV2 and Full MQV) provide assurance to each party that if a malicious
party compromises their static private key, the malicious party cannot masquerade as a third
party to the party whose key was compromised. In other words, if a malicious party, E,
compromises party A’s static private key, then E cannot masquerade as any other party to A. The
dhHybrid1 and Full Unified Model do not provide this assurance to either party. (Of course, for
any scheme, if a static private key is compromised by an adversary, then that adversary can
masquerade as the owner of that static private key to any other entity.)

6.1.2 Each Party Generates an Ephemeral Key Pair; No Static Keys are Used,
C(2, 0)

For this category, only Diffie-Hellman schemes are specified. Each party generates ephemeral
key pairs with the same domain parameters. The two parties exchange ephemeral public keys
and then compute the shared secret. The secret keying material is derived using the shared secret
(see Figure 5).

Figure 5: General Protocol when Each Party Generates Ephemeral Key Pairs; No Static
Keys are Used

Prerequisites: The following are prerequisites for the use of all C(2,0) schemes:

1. Each party shall have an authentic copy of the same set of domain parameters, D. These
parameters shall have been generated as specified in Section 5.5.1. For FFC schemes, D
= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h).
Furthermore, each party shall have assurance of the validity of these domain parameters
as specified in Section 5.5.2.

2. Each party shall have agreed upon an Approved key derivation function (see Section 5.8)
and an appropriate Approved hash function for use with the key derivation function (see
Section 5.5).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 66

6.1.2.1 dhEphem, C(2, 0, FFC DH)
This section describes the dhEphem scheme from ANS X9.42. The prerequisites for this scheme
shall be satisfied as specified in Section 6.1.2.

With the exception of key derivation, dhEphem is “symmetric” in the actions of parties U (the
initiator) and V (the responder). Only the actions performed by party U are specified here; a
specification of the actions performed by party V may be obtained by systematically replacing
the symbol “U” by “V” (and vice versa) in the description of the key agreement transformation.
Note, however, that U and V must use identical orderings of the bit strings that are input to the
key derivation function; for example, if the Concatenation Key Derivation Function is employed
(see Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in
Section 5.6.1. Send the public key tU to V. Receive an ephemeral public key tV
(purportedly) from V. If tV is not received, output “Invalid” and stop.

2. Verify that tV is a valid public key for the parameters D as specified in Section 5.6.2.3. If
assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an integer in
the range [2 to p-1] – from the set of domain parameters D, U’s ephemeral private key rU,
and V’s ephemeral public key tV. If the call to the FFC DH primitive outputs “Failure”,
destroy the results of all intermediate calculations used in the attempted computation of
Z, output “Failure”, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

dhEphem is summarized in Table 10.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 67

Table 10: dhEphem Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter})

Static Data N/A N/A

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Computation Compute Z by calling FFC DH using
rU and tV

Compute Z by calling FFC DH using
rV and tU

Derive Secret
Keying Material

Compute kdf(Z,OtherInput)

Compute kdf(Z,OtherInput)

6.1.2.2 Ephemeral Unified Model, C(2, 0, ECC CDH)
This section describes the Ephemeral Unified Model scheme from ANS X9.63. The prerequisites
for this scheme shall be satisfied as specified in Section 6.1.2.

With the exception of key derivation, Ephemeral Unified Model is “symmetric” in the actions of
parties U (the initiator) and V (the responder). Only the actions performed by party U are
specified here; a specification of the actions performed by party V may be obtained by
systematically replacing the symbol “U” by “V” (and vice versa) in the description of the key
agreement transformation. Note, however, that U and V must use identical orderings of the bit
strings that are input to the key derivation function; for example, if the Concatenation Key
Derivation Function is employed (see Section 5.8.1), then in each party’s computation of keying
material, the identifier for U must precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in
Section 5.6.1. Send the public key Qe,U to V. Receive an ephemeral public key Qe,V
(purportedly) from V. If Qe,V is not received, output “Invalid” and stop.

2. Verify that Qe,V is a valid public key for the parameters D as specified in Section 5.6.2.3.
If assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an element of
the finite field of size q – from the set of domain parameters D, U’s ephemeral private

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 68

key de,U, and V’s ephemeral public key Qe,V. If the call to the ECC CDH primitive outputs
“Failure”, destroy the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte-
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

The Ephemeral Unified Model is summarized in Table 11.

Table 11: Ephemeral Unified Model Key Agreement Scheme

 Party U Party V

Domain
Parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data N/A N/A

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Computation Compute Z by calling ECC CDH
using de,U and Qe,V

Compute Z by calling ECC CDH
using de,V V’s and Qe,U

Derive Secret
Keying Material

Compute kdf(Z,OtherInput)

Compute kdf(Z,OtherInput)

6.1.2.3 Rationale for Choosing a C(2, 0) Scheme
These schemes offer no assurance to either party of the identifier of the entity with whom they
have established a shared secret, since there is no binding between an identifier and an ephemeral
public key.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 69

These schemes offer assurance to both parties that the current shared secret is isolated from prior
and future compromises of shared secrets and private keys because all cryptographic material
used in the computation of the shared secret is ephemeral and is destroyed immediately after use.

Despite the fact that these schemes offer very few assurances, they may be used as a component
in many applications. For applications where, for one reason or another, there is no need to know
the identifier of the party with whom one is establishing a shared secret, or where the identifier is
bound to the public key through some other method (for example, through the use of digital
signatures), these schemes may be appropriate.

These schemes have the property of being relatively fast to compute, due to the lack of any
certificate validation. They also require no support in the form of a certificate authority. These
schemes are also often used as building blocks in larger protocols where other parts of the
protocol add additional security properties.

This Recommendation does not specify how to add key confirmation to these schemes.

6.2 Schemes Using One Ephemeral Key Pair, C(1)

In this category, the parties participating in a key agreement perform different calculations to
determine the shared secret, depending on whether or not they initiate the key agreement process.
Let party U serve as the initiator, and party V serve as the responder. Only the initiator (party U)
generates an ephemeral key pair.

This category consists of two subcategories that are determined by the possession of static key
pairs by the parties. In the first subcategory, both the initiator and the responder have static key
pairs, and the initiator also generates an ephemeral key pair (see Section 6.2.1). In the second
subcategory, the initiator generates an ephemeral key pair, but has no static key pair; the
responder has only a static key pair (see Section 6.2.2).

6.2.1 Initiator Has a Static Key Pair and Generates an Ephemeral Key Pair;
Responder Has a Static Key Pair, C(1, 2)

For these schemes, party U (the initiator) uses both static and ephemeral private/public key pairs.
Party V (the responder) uses only a static private/public key pair. Party U and party V obtain
each other’s static public keys in a trusted manner. Party U also sends its ephemeral public key to
party V. A shared secret is generated by both parties using the available static and ephemeral
keys. The shared secret keying material is derived using the shared secret (see Figure 6).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 70

Figure 6: General Protocol when the Initiator has both Static and Ephemeral Key Pairs,
and the Responder has only a Static Key Pair

Prerequisites: The following are prerequisites for the use of all C(1,2) schemes.

1. Each party shall have an authentic copy of the same set of domain parameters, D. These
parameters shall have been generated as specified in Section 5.5.1. For FFC schemes, D
= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h).
Furthermore, each party shall have assurance of the validity of these domain parameters
as specified in Section 5.5.2.

2. Each party shall have been designated as the owner of a static key pair that was generated
as specified in Section 5.6.1 using the set of domain parameters, D. For FFC schemes, the
static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party shall
obtain assurance of the validity of its own static public key as specified in Section
5.6.2.1. Each party shall obtain assurance of its possession of the correct value for its
own private key as specified in Section 5.6.3.1.

3. The parties shall have agreed upon an Approved key derivation function (see Section 5.8)
and an appropriate Approved hash function for use with the key derivation function (see
Section 5.5).

4. Prior to or during the key agreement process, each party shall obtain the static public key
that is bound to an identifier claimed by (or associated with) the other party. These static
public keys shall be obtained in a trusted manner (e.g., from a certificate signed by a
trusted CA). Each party shall obtain assurance of the validity of the other party’s static
public key as specified in Section 5.6.2.2

The following is a prerequisite for using the derived keying material for purposes beyond the
C(1,2) scheme itself.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 71

The recipient of a static public key shall obtain assurance that the owner of the static key
pair claimed by the other party is (or was) in possession of the appropriate static private
key, as specified in Section 5.6.3.2. This assurance of the owner’s possession of its static
private key shall be obtained either through explicit key confirmation incorporated into
the key agreement scheme, as specified in Section 5.6.3.2.1, or from a trusted party, as
specified in Section 5.6.3.2.2. Assurance from a trusted party may be obtained prior to
employing a particular C(1,2) scheme.

6.2.1.1 dhHybridOneFlow, C(1, 2, FFC DH)
This section describes the dhHybridOneFlow scheme from ANS X9.42. The prerequisites for
this scheme shall be satisfied as specified in Section 6.2.1. In particular, party U shall obtain the
static public key yV of party V, and party V shall obtain the static public key yU of party U.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in
Section 5.6.1. Send the public key tU to V.

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs – an integer in
the range [2 to p-1] – from the set of domain parameters D, U’s static private key xU, and
V’s static public key yV. Convert Zs to a byte string (which is also denoted by Zs) using
the Integer-to-Byte-String Conversion specified in Appendix C.1, and then destroy (i.e.,
zeroize) the results of all intermediate calculations used in the computation of Zs. If the
call to the FFC DH primitive outputs “Failure”, destroy the results of all intermediate
calculations used in the attempted computation of Zs, output “Failure”, and stop.

3. Use the FCC DH primitive to derive a shared secret Ze – another integer in the range [2 to
p-1] – from the set of domain parameters D, U’s ephemeral private key rU, and V’s static
public key yV. Convert Ze to a byte string (which is also denoted by Ze) using the Integer-
to-Byte-String Conversion specified in Appendix C.1, and then destroy (i.e., zeroize) the
results of all intermediate calculations used in the computation of Ze. If this call to the
FFC DH primitive outputs “Failure”, destroy Zs and the results of all intermediate
calculations used in the attempted computation of Ze, output “Failure”, and stop.

4. Compute the shared secret Z = Ze || Zs. Destroy the results of all intermediate calculations
used in the computation of Z (including Ze and Zs).

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 72

OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transfo rmation in order to a) establish a
shared secret value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received, output
“Invalid” and stop.

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. If
assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Zs – an integer in
the range [2 to p-1] – from the set of domain parameters D, V’s static private key xV, and
U’s static public key yU. Convert Zs to a byte string (which is also denoted by Zs) using
the Integer-to-Byte-String Conversion specified in Appendix C.1, and then destroy (i.e.,
zeroize) the results of all intermediate calculations used in the computation of Zs. If the
call to the FFC DH primitive outputs “Failure”, destroy the results of all intermediate
calculations used in the attempted computation of Zs, output “Failure”, and stop.

4. Use the FCC DH primitive to derive a shared secret Ze – another integer in the range [2 to
p-1] – from the set of domain parameters D, V’s static private key xV, and U’s ephemeral
public key tU. Convert Ze to a byte string (which is also denoted by Ze) using the Integer-
to-Byte-String Conversion specified in Appendix C.1, and then destroy (i.e., zeroize) the
results of all intermediate calculations used in the computation of Ze. If this call to the
FFC DH primitive outputs “Failure”, destroy Zs and the results of all intermediate
calculations used in the attempted computation of Ze, output “Failure”, and stop.

5. Compute the shared secret Z = Ze || Zs. Destroy the results of all intermediate calculations
used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 73

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

dhHybridOneFlow is summarized in Table 12.

Table 12: dhHybridOneFlow Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter})

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Computation Compute Zs by calling FFC DH
using xU and yV

Compute Ze by calling FFC DH
using rU and yV

Compute Z = Ze || Zs

Compute Zs by calling FFC DH
using xV and yU

Compute Ze by calling FFC DH
using xV and tU

Compute Z = Ze || Zs

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.1.2 One-Pass Unified Model, C(1, 2, ECC CDH)
This section describes the One-Pass Unified Model scheme from ANS X9.63. The prerequisites
for this scheme shall be satisfied as specified in Section 6.2.1. In particular, party U shall obtain
the static public key Qs,V of party V, and party V shall obtain the static public key Qs,U of party
U.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 74

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in
Section 5.6.1. Send the public key Qe,U to V.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs – an element
of the finite field of size q – from the set of domain parameters D, U’s static private key
ds,U, and V’s static public key Qs,V. Convert Zs to a byte string (which is also denoted by
Zs) using the Field-element-to-Byte-String Conversion specified in Appendix C.2, and
then destroy (i.e., zeroize) the results of all intermediate calculations used in the
computation of Zs. If the call to the ECC CDH primitive outputs “Failure”, destroy (i.e.,
zeroize) the results of all intermediate calculations used in the attempted computation of
Zs, output “Failure”, and stop.

3. Use the ECC CDH primitive to derive a shared secret Ze – another element of the finite
field of size q – from the set of domain parameters D, U’s ephemeral private key de,U, and
V’s static public key Qs,V. Convert Ze to a byte string (which is also denoted by Ze) using
the Field-element-to-Byte-String Conversion specified in Appendix C.2, and then destroy
the results of all intermediate calculations used in the computation of Ze. If this call to the
ECC CDH primitive outputs “Failure”, destroy Zs and the results of all intermediate
calcula tions used in the attempted computation of Ze, output “Failure”, and stop.

4. Compute the shared secret Z = Ze || Zs. Destroy the results of all intermediate calculations
used in the computation of Z (including Ze and Zs).

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received,
output “Invalid” and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 5.6.2.3.
If assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Zs – an element
of the finite field of size q – from the set of domain parameters D, V’s static private key
ds,V, and U’s static public key Qs,U. Convert Zs to a byte string (which is also denoted by
Zs) using the Field-element-to-Byte-String Conversion specified in Appendix C.2, and
then destroy (i.e., zeroize) the results of all intermediate calculations used in the

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 75

computation of Zs. If the call to the ECC CDH primitive outputs “Failure”, destroy the
results of all intermediate calculations used in the attempted computation of Zs, output
“Failure”, and stop.

4. Use the ECC CDH primitive to derive a shared secret Ze – another element of the finite
field of size q – from the set of domain parameters D, V’s static private key ds,V, and U’s
ephemeral public key Qe,U. Convert Ze to a byte string (which is also denoted by Ze) using
the Field-element-to-Byte-String Conversion specified in Appendix C.2, and then destroy
the results of all intermediate calculations used in the computation of Ze. If this call to the
ECC CDH primitive outputs “Failure”, destroy Zs and the results of all intermediate
calculations used in the attempted computation of Ze, output “Failure”, and stop.

5. Compute the shared secret Z = Ze || Zs. Destroy the results of all intermediate calculations
used in the computation of Z (including Ze and Zs).

6. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

7. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

The One-Pass Unified Model is summarized in Table 13.

Table 13: One-Pass Unified Model Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 76

 Party U Party V

Computation Compute Zs by calling ECC CDH
using ds,U and Qs,V

Compute Ze by calling ECC CDH
using de,U and Qs,V

Compute Z = Ze || Zs

Compute Zs by calling ECC DH
using ds,V and Qs,U

Compute Ze by calling ECC DH
using ds,V and Qe,U

Compute Z = Ze || Zs

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.1.3 MQV1, C(1, 2, FFC MQV)
This section describes the MQV1 scheme from ANS X9.42. The prerequisites for this scheme
shall be satisfied as specified in Section 6.1.1. In particular, party U shall obtain the static public
key yV of party V, and party V shall obtain the static public key yU of party U.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in
Section 5.6.1. Send the public key tU to V.

2. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1 to derive a shared
secret Z – an integer in the range [2 to p-1] – from the set of domain parameters D, U’s
static private key xU, V’s static public key yV, U’s ephemeral private key rU, U’s
ephemeral public key tU, and (for a second time) V’s static public key yV. If the call to the
FFC MQV primitive outputs “Failure”, destroy (i.e., zeroize) the results of all
intermediate calculations used in the attempted computation of Z, output “Failure”, and
stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 77

SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key tU (purportedly) from U. If tU is not received, output
“Invalid” and stop.

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. If
assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the MQV1 form of the FFC MQV primitive in Section 5.7.2.1 to derive a shared
secret Z – an integer in the range [2 to p-1] – from the set of domain parameters D, V’s
static private key xV, U’s static public key yU, V’s static private key xV (for a second time),
V’s static public key yV, and U’s ephemeral public key tU. If the call to the FFC MQV
primitive outputs “Failure”, destroy (i.e., zeroize) the results of all intermediate
calculations used in the attempted computation of Z, output “Failure”, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.
Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

MQV1 is summarized in Table 14.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 78

Table 14: MQV1 Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter})

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Computation
C

Compute Z by calling FFC MQV
using xU, yV, rU, tU, and yV (again)

Compute Z by calling FFC MQV
using xV, yU, xV (again), yV, and tU

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.1.4 One-Pass MQV, C(1, 2, ECC MQV)
This section describes the 1-Pass MQV scheme from ANS X9.63. The prerequisites for this
scheme shall be satisfied as specified in Section 6.2.1. In particular, party U shall obtain the
static public key Qs,V of party V, and party V shall obtain the static public key Qs,U of party U.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following transformation to a) establish a shared secret value Z with
party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in
Section 5.6.1. Send the public key Qe,U to V.

2. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3 to derive a
shared secret value Z – an element of the finite field of size q – from the set of domain
parameters D, U’s static private key ds,U, V’s static public key Qs,V, U’s ephemeral private
key de,U, U’s ephemeral public key Qe,U, and (for a second time) V’s static public key

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 79

Qs,V. If the call to the ECC MQV primitive outputs “Failure”, destroy (i.e., zeroize) the
results of all intermediate calculations used in the attempted computation of Z, output
“Failure”, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the ident ifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following transformation to a) establish a shared secret value Z with
party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received,
output “Invalid” and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 5.6.2.3.
If assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the One-Pass MQV form of the ECC MQV primitive in Section 5.7.2.3 to derive a
shared secret value Z – an element of the finite field of size q – from the set of domain
parameters D, V’s static private key ds,V, U’s static public key Qs,U, V’s static private key
ds,V (for a second time), V’s static public key Qs,V, and U’s ephemeral public key Qe,U. If
the call to the ECC MQV primitive outputs “Failure”, destroy (i.e., zeroize) the results of
all intermediate calculations used in the attempted computation of Z, output “Failure”,
and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 80

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

The Full One-Pass MQV is summarized in Table 15.

Table 15: One-Pass MQV Model Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Computation Compute Z by calling ECC MQV
using ds,U, Qs,V, de,U, Qe,U, and Qs,V
(again)

Compute Z by calling ECC MQV
using ds,V, Qs,U, ds,V (again), Qs,V, and
Qe,U

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.1.5 Rationale for Choosing a C(1, 2) Scheme
These schemes offer different assurances to the different parties participating in the exchange.
One party (the initiator) has both static and ephemeral keys. The other party (the responder) has
only a static key.

Both parties are assured that only they and the other intended party can compute the shared
secret. The initiator, by virtue of its ephemeral contribution, has assurance that previous derived
secret keying material will not be reused.

A compromise of the static private key of the initiator does not by itself compromise prior or
future shared secrets (and therefore, secret keying material) of legitimate C(1, 2) transactions,
nor does the compromise of only the initiator’s ephemeral private key. However, the
compromise of the static private key of the responder leads to the compromise of all future
shared secrets where this party acts as a responder using the same static key. Additionally, any
previous shared secrets (and therefore, secret keying material) that are computed with this party

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 81

acting as responder become compromised if a malicious party stored the initiator’s ephemeral
public key.

For a given set of FFC domain parameters, MQV1 is expected to have better performance than
the dhHybridOneFlow. For a given set of ECC domain parameters, One-Pass MQV is expected
to have better performance than the One-Pass Unified Model.

Key confirmation can be provided in either or both directions using the methods specified in
Sections 8.4.4, 8.4.5, and 8.4.6. Upon completion of a Key Confirmation as in Section 8, the
recipient of the confirmation has assurance of the identifier of the key confirmation provider
(through the identifier bound to the static key), as well as confirmation of the active participation
of the provider

6.2.2 Initiator Generates Only an Ephemeral Key Pair; Responder Has Only a
Static Key Pair, C(1, 1)

For these schemes, Party U generates an ephemeral key pair, but has no static key pair; party V
has only a static key pair. Party U obtains party V’s static public key in a trusted manner (for
example, from a certificate signed by a trusted CA) and sends its ephemeral public key to Party
V. The parties compute a shared secret using their priva te keys and the other party’s public key.
Each party uses the shared secret to derive secret keying material (see Figure 7).

Figure 7: General Protocol when the Initiator has Only an Ephemeral Key Pair, and the
Responder has Only a Static Key Pair

Prerequisites: The following are prerequisites for the use of all C(1,1) schemes.

1. Each party shall have an authentic copy of the same set of domain parameters, D. These
parameters shall have been generated as specified in Section 5.5.1. For FFC schemes, D
= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h).
Furthermore, each party shall have assurance of the validity of these domain parameters
as specified in Section 5.5.2.

2. The responder shall have been designated as the owner of a static key pair that was
generated as specified in Section 5.6.1 using the set of domain parameters, D. For FFC
schemes, the static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). The

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 82

responder shall obtain assurance of the validity of its own static public key as specified in
Section 5.6.2.1. The responder shall obtain assurance of its possession of the correct
value of its own private key as specified in Section 5.6.3.1.

3. The parties shall have agreed upon an Approved key derivation function (see Section 5.8)
and an appropriate Approved hash function for use with the key derivation function (see
Section 5.5).

4. Prior to the key agreement process, the initiator shall obtain the static public key that is
bound to an identifier claimed by (or associated with) the responder. This static public
key shall be obtained in a trusted manner (e.g., from a certificate signed by a trusted CA).
The initiator shall obtain assurance of the validity of the responder’s static public key as
specified in Section 5.6.2.2.

The following is a prerequisite for using the derived keying material for purposes beyond the
C(1,1) scheme itself.

The initiator shall also obtain assurance that the responder is (or was) in possession of the
appropriate static private key, as specified in Section 5.6.3.2. This assurance of the
responder’s possession of its static private key shall be obtained either through explicit
key confirmation incorporated into the key agreement scheme, as specified in Section
5.6.3.2.1, or from a trusted third party, as specified in Section 5.6.3.2.2. Assurance from a
trusted third party may be obtained prior to employing a particular C(1,1) scheme, but
shall be obtained prior to using the keying material derived from the shared secret
established by means of that scheme.

6.2.2.1 dhOneFlow, C(1, 1, FFC DH)
This section describes the dhOneFlow scheme from ANS X9.42. The prerequisites for this
scheme shall be satisfied as specified in Section 6.2.2. In particular, party U shall obtain the
static public key yV of party V.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (rU, tU) from the domain parameters D as specified in
Section 5.6.1. Send the public key tU to V.

2. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an integer in
the range [2 to p-1] – from the set of domain parameters D, U’s ephemeral private key rU,
and V’s static public key yV. If the call to the FFC DH primitive outputs “Failure”,

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 83

destroy (i.e., zeroize) the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key tU (purportedly) from V. If tU is not received, output
“Invalid” and stop.

2. Verify that tU is a valid public key for the parameters D as specified in Section 5.6.2.3. If
assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the FCC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an integer in
the range [2 to p-1] – from the set of domain parameters D, V’s static private key xV, and
U’s ephemeral public key tU. If the call to the FFC DH primitive outputs “Failure”,
destroy (i.e., zeroize) the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 84

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

dhOneFlow is summarized in Table 16.

 Table 16: dhOneFlow Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter})

Static Data N/A 1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Computation Compute Z by calling FFC DH using
rU and yV

Compute Z by calling FFC DH using
xV and tU

Derive Secret
Material

Compute kdf(Z,OtherInput)

Compute kdf(Z,OtherInput)

6.2.2.2 One-Pass Diffie -Hellman, C(1, 1, ECC CDH)
This section describes the One-Pass Diffie-Hellman scheme from ANS X9.63. The prerequisites
for this scheme shall be satisfied as specified in Section 6.2.2. In particular, party U shall obtain
the static public key Qs,V of party V.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID.

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as specified in
Section 5.6.1. Send the public key Qe,U to V.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an element of
the finite field of size q – from the set of domain parameters D, U’s ephemeral private

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 85

key de,U, and V’s static public key Qs,V. If this call to the ECC CDH primitive outputs
“Failure”, destroy (i.e., zeroize) the results of all intermediate calculations used in the
attempted computation of Z, output “Failure”, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte-
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received,
output “Invalid” and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in Section 5.6.2.3.
If assurance of public key validity cannot be obtained, output “Invalid” and stop.

3. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an element of
the finite field of size q – from the set of domain parameters D, V’s static private key ds, V,
and U’s ephemeral public key Qe,U. If this call to the ECC CDH primitive outputs
“Failure”, destroy (i.e., zeroize) the results of all intermediate calculations used in the
attempted computation of Z, output “Failure”, and stop.

4. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte-
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Z.

5. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and – if the option is employed –
SharedInfo). (See Section 5.8 and Appendix B.) If the key derivation function outputs
“Invalid”, destroy all copies of Z, output “Invalid”, and stop.

6. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 86

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

The One-Pass Diffie-Hellman is summarized in Table 17.

Table 17: One-Pass Diffie-Hellman Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data N/A 1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data

1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Computation Compute Z by calling ECC CDH
using de,U and Qs,V

Compute Z by calling ECC CDH
using ds,V and Qe,U

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) Compute kdf(Z,OtherInput)

6.2.2.3 Rationale in Choosing a C(1, 1) Scheme
In these schemes, one party (the initiator) has only an ephemeral key, while the other party (the
responder) has only a static key. Different assurances are given to the different parties in the key
establishment transaction.

Due to the use of a static key by the responder, the initiator (only) has assurance that no
unintended party can compute the shared secret without the compromise of private material. The
responder has no such assurance, since the responder has no assurance about who is providing
the ephemeral key (that is, unless there are additional elements in the protocol using this
scheme).

Due to the use of an ephemeral key by the initiator, the initiator has assurance that a previous
shared secret will not be reused.

There is no assurance to either party that the security of the shared secret is isolated from
compromises of private keys from prior or future C(1,1) transactions. A compromise of the
initiator’s ephemeral private key compromises the shared secret for that individual transaction
only. However, a compromise of the responder’s static private key compromises all shared
secrets resulting from future C(1,1) transactions in which that party is a responder, as well as any

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 87

shared secrets resulting from prior C(1,1) transactions for which a malicious party stored the
ephemeral public keys.

The responder does not have any assurances as to the identifier of the initiator.

The responder may provide key confirmation to the initiator as specified in Section 8.4.7, giving
the initiator assurance as to the identifier and active participation of the responder.

6.3 Scheme Using No Ephemeral Key Pairs, C(0, 2)

In this category, each party has only static key pairs that have been generated using the same
domain parameters. Each party obtains the other party’s static public keys. A nonce shall be sent
by party U (the initiator) to party V (the scheme responder) to ensure that the derived keying
material is different for each key establishment transaction. The parties calculate the shared
secret using their own static private key, the other party’s static public key and the nonce(s).
Secret keying material is derived using the key derivation function and the shared secret (see
Figure 8).

U V

U’s Static Public Key

V’s Static Public Key

1. U uses its static private key
and V’s static public key to
form a shared secret

2. U invokes the Key Derivation
Function using the shared secret
and NonceU.

1. V uses its static private key
and U’s static public key to
form a shared secret

2. V invokes the Key Derivation
Function using the shared secret
and NonceU.

NonceU

Figure 8: Each Party has only a Static Key Pair

Prerequisites: The following are prerequisites for the use of all C(0,2) schemes.

1. Each party shall have an authentic copy of the same set of domain parameters, D. These
parameters shall have been generated as specified in Section 5.5.1. For FFC schemes, D

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 88

= (p, q, g{, SEED, pgenCounter}); for ECC schemes, D = (q, FR, a, b{, SEED}, G, n, h).
Furthermore, each party shall have assurance of the validity of these domain parameters
as specified in Section 5.5.2.

2. Each party shall have been designated as the owner of a static key pair that was generated
as specified in Section 5.6.1 using the set of Domain parameters, D. For FFC schemes,
the static key pair is (x, y); for ECC schemes, the static key pair is (ds, Qs). Each party
shall obtain assurance of the validity of its own static public key as specified in Section
5.6.2.1. Each party shall obtain assurance of its possession of the correct value for its
own private key as specified in Section 5.6.3.1.

3. The parties shall have agreed upon an Approved key derivation function (see Section 5.8)
and an appropriate Approved hash function for use with the key derivation function (see
Section 5.5). In addition the parties shall agree on their use of nonce(s)

4. Prior to or during the key agreement process, each party shall obtain the static public key
that is bound to an identifier claimed by (or associated with) the other party. These static
public keys shall be obtained in a trusted manner (e.g., from a certificate signed by a
trusted CA). Each party shall obtain assurance of the validity of the other party’s static
public key as specified in Section 5.6.2.2

The following is a prerequisite for using the derived keying material for purposes beyond the
C(0,2) scheme itself.

The recipient of a static public key shall obtain assurance that the owner of the static key
pair claimed by the other party is (or was) in possession of the appropriate static private
key, as specified in Section 5.6.3.2. This assurance of the owner’s possession of its static
private key shall be obtained either through explicit key confirmation incorporated into
the key agreement scheme, as specified in Section 5.6.3.2.1, or from a trusted party, as
specified in Section 5.6.3.2.2. Assurance from a trusted party may be obtained prior to
employing a particular C(0,2) scheme.

6.3.1 dhStatic, C(0, 2, FFC DH)
This section describes the dhStatic scheme from ANS X9.42. The prerequisites for this scheme
shall be satisfied as specified in Section 6.3. In particular, party U shall obtain the static public
key yV of party V, and party V shall obtain the static public key yU of party U.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID. The same requirement applies to the
placement of NonceU in a SharedInfo field of OtherInput (See item 4 below).

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 89

1. Generate a nonce, NonceU (See Section 5.4). Send NonceU to V.

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an integer in
the range [2 to p-1] – from the set of domain parameters D, U’s static private key xU, and
V’s static public key yV. If the call to the FFC DH primitive outputs “Failure”, destroy
(i.e., zeroize) the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and SharedInfo). NonceU shall be
included in a SharedInfo field of OtherInput. (See Section 5.8 and Appendix B.) If the
key derivation function outputs “Invalid”, destroy all copies of Z, output “Invalid”, and
stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive a nonce, NonceU, from U. If NonceU is not received, output “Invalid” and stop.

2. Use the FFC DH primitive in Section 5.7.1.1 to derive a shared secret Z – an integer in
the range [2 to p-1] – from the set of domain parameters D, V’s static private key xV, and
U’s static public key yU. If the call to the FFC DH primitive outputs “Failure”, destroy
(i.e., zeroize) the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Integer-to-Byte-String
Conversion specified in Appendix C.1, and then destroy the results of all intermediate
calculations used in the computation of Z.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and SharedInfo). NonceU shall be
included in a SharedInfo field of OtherInput. (See Section 5.8 and Appendix B.) If the
key derivation function outputs “Invalid”, destroy all copies of Z, output “Invalid”, and
stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 90

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

dhStatic is summarized in Table 18.

Table 18: dhStatic Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(p, q, g{, SEED, pgenCounter}) (p, q, g{, SEED, pgenCounter})

Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data NonceU

Computation Compute Z by calling FFC DH
using xU, and yV

Compute Z by calling FFC DH using
xV, and yU

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) using
NonceU

Compute kdf(Z,OtherInput) using
NonceU

6.3.2 Static Unified Model, C(0, 2, ECC CDH)
This section describes the Static Unified Model scheme from ANS X9.63. The prerequisites for
this scheme shall be satisfied as specified in Section 6.3. In particular, party U shall obtain the
static public key Qs,V of party V, and party V shall obtain the static public key Qs,U of party U.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function; for example, if the Concatenation Key Derivation Function is employed (see
Section 5.8.1), then in each party’s computation of keying material, the identifier for U must
precede the identifier for V when forming the contextID. The same requirement applies to the
placement of NonceU in a SharedInfo field of OtherInput (See item 4 below).

Party U shall execute the following key agreement transformation in order to a) establish a
shared secret value Z with party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate a nonce, NonceU (See Section 5.4). Send NonceU to V.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an element of
the finite field of size q – from the set of domain parameters D, U’s static private key ds,U,
and V’s static public key Qs,V. If the call to the ECC CDH primitive outputs “Failure”,

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 91

destroy (i.e., zeroize) the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

3. Convert Zs to a byte string (which is also denoted by Zs) using the Field-element-to-Byte-
String Conversion specified in Appendix C.2, and then destroy (i.e., zeroize) the results
of all intermediate calculations used in the computation of Zs.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and SharedInfo). NonceU shall be
included in a SharedInfo field of OtherInput. (See Section 5.8 and Appendix B.) If the
key derivation function outputs “Invalid”, destroy all copies of Z, output “Invalid”, and
stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Party V shall execute the following key agreement transformation in order to a) establish a
shared secret value, Z, with party U, and b) derive shared secret keying material from Z.

1. Receive a nonce, NonceU, from U. If NonceU is not received, output “Invalid” and stop.

2. Use the ECC CDH primitive in Section 5.7.1.2 to derive a shared secret Z – an element of
the finite field of size q – from the set of domain parameters D, V’s static private key ds,V,
and U’s static public key Qs,U. If the call to the ECC CDH primitive outputs “Failure”,
destroy (i.e., zeroize) the results of all intermediate calculations used in the attempted
computation of Z, output “Failure”, and stop.

3. Convert Z to a byte string (which is also denoted by Z) using the Field-element-to-Byte-
String Conversion specified in Appendix C.2, and then destroy the results of all
intermediate calculations used in the computation of Zs.

4. Use the agreed-upon key derivation function to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value Z and
OtherInput (including the identifiers IDU and IDV, and SharedInfo). NonceU shall be
included in a SharedInfo field of OtherInput. (See Section 5.8 and Appendix B.) If the
key derivation function outputs “Invalid”, destroy all copies of Z, output “Invalid”, and
stop.

5. Destroy all copies of the shared secret Z and output DerivedKeyingMaterial.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits, “Failure”, or “Invalid”.

Note: If key confirmation is to be incorporated into this scheme, additional input may be
required, and additional steps must be taken by U and V beyond the computation of
DerivedKeyingMaterial. See Section 8 for details.

Static Unified Model is summarized in Table 19.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 92

Table 19: Static Unified Model Key Agreement Scheme Summary

 Party U Party V

Domain
Parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data NonceU

Computation Compute Z by calling ECC CDH
using ds,U, and Qs,V

Compute Z by calling ECC CDH
using ds,V, and Qs,U

Derive Secret
Keying Material

Compute kdf(Z,OtherInput) using
NonceU

Compute kdf(Z,OtherInput) using
NonceU

6.3.3 Rationale in Choosing a C(0, 2) Scheme
As identifiers are bound to the static public keys that are used, each party has assurance that the
intended party and no other party can compute the shared secret, without the compromise of a
private key. If an entity’s private key is compromised, then all shared secrets of prior and future
C(0,2) transactions involving that party are compromised.

Both parties are assured that only they and the other intended party can compute the shared
secret. The initiator, by virtue of NonceU, has assurance that previous derived secret keying
material will not be reused

Key confirmation can be provided in either or both directions for these schemes as specified in
Sections 8.4.8, 8.4.9, and 8.4.10. Upon completion of a Key Confirmation, the recipient of the
confirmation has assurance of the identifier of the key confirmation provider (through the
identifier bound to the static key), as well as confirmation of the active participation of the
provider.

7. DLC based Key Transport

The FFC and ECC key agreement schemes in this Recommendation that employ a receiver’s
static key9 may be followed by a key transport scheme using a NIST-approved key-wrapping
algorithm, such as the AES key wrap algorithm [8]). Schemes fulfilling these requirements are
specified as the C(2,2), C(1,2), C(1,1) and C(0,2) schemes (see Section 6). See Recommendation

9 To prevent receiver identifier spoofing, since the sender would know the identifier of the intended receiver.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 93

for Key Management [7] for guidance on appropria te Key-Wrapping Key sizes. The DLC-based
key transport scheme is as follows:

1. A key agreement scheme is used to establish a shared secret between the sender and the
receiver. Key confirmation (as specified in Section 8) may optionally be used to provide
assurance that the shared secret is the same for both the initiator and responder.

2. The sender obtains a KeyWrappingKey from the DerivedKeyingMaterial that is computed
by applying the key derivation function to the shared secret. Note that the sender may
have been either the initiator or the responder during the key agreement performed in step
1.

3. The sender selects secret keying material, KeyingMaterial, to transport to the receiver.

4. The sender calculates WrappedKey = KeyWrap(KeyWrappingKey, KeyingMaterial)
using KeyWrap(), an Approved key wrapping algorithm.

5. The sender sends WrappedKey to the receiver.

6. The receiver receives WrappedKey from the sender.

7. The receiver obtains a KeyWrappingKey from the DerivedKeyingMaterial that is
computed by applying the key derivation function to the shared secret.

8. The receiver calculates KeyingMaterial = KeyUnwrap(KeyWrappingKey, WrappedKey)
using KeyUnwrap(), the corresponding key unwrapping algorithm.

Note that if the key agreement scheme used in Step 1 is such that the receiver does not contribute
an ephemeral key pair to the calculation of the shared secret (that is, either a C(1,2) or C(1,1)
scheme has been used), then Steps 1 through 5 can be done by the sender without direct
involvement of the receiver. This can be useful in a store-and-forward environment, such as e-
mail.

A default “rule” of this Recommendation is that ephemeral keys shall not be reused (see Section
5.6.4.3). An exception to this rule is that the sender may use the same ephemeral key pair in step
1 above in multiple DLC-based Key Transport transactions if the same secret keying material is
being transported in each transaction and if all these transactions occur simultaneously (or within
a short period of time). However, the security properties of the key establishment scheme may be
affected by reusing the ephemeral key in this manner.

8 Key Confirmation

The term key confirmation refers to the use of explicit messages (such as those defined in this
Recommendation) to provide assurance to one party (the key confirmation recipient) that another
party (the key confirmation provider) actually possesses the correct shared secret (from the key
confirmation recipient’s perspective). Key agreement, accompanied by key confirmation (as
described in this Recommendation), can be used to provide the recipient with assurance of either
the provider’s current or prior possession of the static private key that is associated with a

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 94

particular static public key (see Section 8.1). A key establishment scheme is said to provide
“unilateral key confirmation” when it provides this assurance to only one of the participants,
and the scheme is said to provide “bilateral key confirmation” when this assurance is provided
to both participants (that is, unilateral key confirmation is provided in both directions).

Oftentimes, key confirmation is provided implicitly by a means outside of the key establishment
scheme (for example, by decrypting an encrypted message from the other party using a key
derived from the shared secret), but this is not always the case. In some cases, it may be
appropriate to include the exchange of explicit key confirmation messages within the key
establishment process itself. Key confirmation may enhance the security properties that are
achieved by a key establishment scheme. For key confirmation to comply with this
Recommendation, key confirmation shall be incorporated into key establishment schemes as
specified in this section.

Unilateral key confirmation may be incorporated into any scheme that uses a static key pair
associated with the provider. Successful key confirmation will provide assurance to the recipient
that the provider has correctly derived keying material. Bilateral key confirmation may be added
to any key agreement scheme in which each party possesses a static key pair.

Table 20 provides a summary of the scheme classes for which unilateral or bilateral key
confirmation is specified. Note that key confirmation for the C(2, 0) key agreement schemes is
not specified, since neither party has a static key pair; if needed, key confirmation would have to
be provided by some other means.

Table 20: Key Agreement Schemes Using Unilateral and Bilateral Key Confirmation

Scheme Class Unilateral Bilateral

C(2, 2) U to V or V to U Yes

C(2, 0) No No

C(1, 2) U to V or V to U Yes

C(1, 1) V to U No

C(0, 2) U to V or V to U Yes

If key confirmation is incorporated into a scheme in which a recipient does not possess an
ephemeral key pair, a nonce shall be used in its place. This nonce shall be provided by the key
confirmation recipient.

The process used to provide key confirmation requires string representations of the ephemeral
public keys. The same notation will be used to represent these keys for schemes based on Finite
Field cryptography (FFC) and elliptic curve cryptography (ECC):

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 95

EphemPubKeyi = the byte string representation of a participant i’s ephemeral public key.

For FFC schemes, an ephemeral public key, ti, is converted from a field element in Fp to a byte
string by representing the field element as an integer in the interval [0, p-1], and then converting
the integer to a byte string as specified in Appendix C.1.

For ECC, the coordinates of the ephemeral public key, Qe, i, are converted from field elements to
byte strings as specified in Appendix C.2 and concatenated (with x first) to form a single byte
string.

8.1 Assurance of Possession Considerations

Key agreement, accompanied by key confirmation (as described in this Recommendation), can
be used to provide the recipient with assurance of either the provider’s current or prior
possession of the static private key that is associated with a particular static public key. Current
possession and prior possession are defined relative to the time of a particular key agreement
transaction (including the delivery of the key confirmation message to the recipient).

As has been observed previously (see Section 5.6.3.2), an adequate demonstration of current
possession of a static private key can be used to provide assurance that the claimed owner of a
static key pair is the true owner. Note also that as time passes, even the true owner of a key pair
may lose possession of the associated private key, either deliberately or due to an error. For these
reasons, assurance of current possession can be of value for some applications. When it is
desired (or required), assurance of current possession shall be obtained as specified below.

The benefits of assurance of current possession of a static private key incorporate the benefits of
assurance of prior possession, but not vice versa. While assurance of prior possession may be
sufficient for some purposes, if both assurance of current and prior possession are feasible to
obtain, then assurance of current possession is preferred.

As stated in Section 5.6.3.2.1, in order for the recipient of successful key confirmation to obtain
assurance of the key confirmation provider’s current possession of the static private key
corresponding to the static public key claimed by that provider (and used in the key agreement
transaction), the underlying key agreement scheme used shall be one of the following, and the
recipient seeking assurance shall serve in the indicated role(s):

• MQV2 or Full MQV, with the key confirmation recipient serving as either the key
agreement initiator or responder.

• dhHybridOneFlow, (Cofactor) One-Pass Unified Model, MQV1 or One-Pass MQV, with
the key confirmation recipient serving as the key agreement initiator.

• dhOneFlow or (Cofactor) One-Pass Diffie-Hellman, with the key confirmation recipient
serving as the key agreement initiator.

The key agreement scheme (including the key confirmation) shall be performed as described in
this Recommendation.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 96

In each of the cases specified above, the key confirmation recipient contributes an ephemeral
public key that is arithmetically combined with the static private key claimed by the provider as
part of the provider’s computation of the shared secret. The unpredictability of the ephemeral
public key contributed by the recipient ensures that the provider’s calculations are performed
contemporaneously, and so a successful computation of the shared secret (as indicated through
key confirmation) offers assurance that the provider has current possession of that static private
key.

If the underlying key agreement scheme is not one of those indicated above (but is one of those
described in this Recommendation), it is possible that some of the calculations required of the
key confirmation provider (in particular, those portions depending on the provider’s knowledge
of a static private key) were completed at a time prior to the current key agreement transaction.
(For example, if the key agreement scheme were either dhHybrid1or the Full Unified Model, the
static shared secret Zs could be computed in advance or saved from a previous transaction.) The
same is true if the key agreement scheme employed is one of those listed above, but the key
confirmation recipient does not serve in one of the specified roles. In such cases, the recipient of
successful key confirmation obtains assurance that the key confirmation provider was — at some
point in time — in possession of the static private key corresponding to the static public key
claimed by that provider. However, the recipient does not obtain assurance that the provider
actually had possession of the static private key during the current transaction.

8.2 Unilateral Key Confirmation for Key Agreement Schemes

Unilateral key confirmation occurs when one participant in a key establishment scheme (the
“provider”) provides assurance to the other participant (the “recipient”) that the same shared
secret has actually been generated by both the provider and the recipient, and thus provides
assurance that shared keying material has been established between the provider and the
recipient. This is an optional feature for any scheme in which the provider possesses a static key
pair. If the intended key confirmation recipient does not contribute an ephemeral public key
during the key establishment process, then a nonce shall be used in its place. Unilateral key
confirmation may be added in either direction to the C(2,2), C(1,2) and C(0,2) schemes; it may
also be added to the C(1,1) schemes, but in one direction only: when the scheme Responder (V)
is the key confirmation provider, and the scheme Initiator (U) is the key confirmation recipient
(see Table 20 in Section 8).

To include unilateral key confirmation from a provider (who has a static key pair) to a recipient,
the following steps shall be incorporated into the scheme. Note that the provider may be either
the scheme initiator (party U) or the scheme responder (party V), as long as the provider has a
static key pair, and the recipient is the other party.

1. If the recipient does not have an ephemeral key pair and has not already provided a nonce
as part of the scheme, then the recipient shall provide a nonce to be used in its place (see
Section 5.4).

2. The provider computes

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 97

MacDataP = message_stringP || IDP || IDR || EphemDataP || EphemDataR {|| Text1}

where

message_stringP is a six byte string with a value of “KC_1_U” or “KC_1_V” depending
on whether U or V is providing the MacTag. Note that these values will differ for
bilateral key confirmation in Section 8.3.

IDP is the identifier of the provider

IDR is the identifier of the recipient

EphemDataP = EphemPubKeyP (if used in the key agreement scheme)

Noncep (for example, when P is the initiator in a C(0, 2) scheme, if
there is no EphemPubKeyP and Noncep is required to derive
secret keying material)

 Null (otherwise)
EphemDataR = EphemPubKeyR (if available)

NonceR (otherwise)

Text1 is an optional bit string that may be used during key confirmation and that is known
by the parties establishing the secret keying material.

3. After computing the shared secret and applying the key derivation function to obtain
DerivedKeyingMaterial (see Section 5.8), the provider parses DerivedKeyingMaterial
into two keys, MacKey and KeyData:

MacKey || KeyData = DerivedKeyingMaterial

4. The provider computes MacTagP (see Section 5.2.1) and sends it to the recipient:
MacTagP = MAC (MacKey, MacLen, MacDataP).

5. The recipient computes MacDataP, MacKey, KeyData and MacTagP in the same manner
as the provider, and then compares its computed MacTagP to the value received from the
provider. If the received value is equal to the derived value, then the recipient is assured
that the provider has derived the same value for MacKey and that the provider shares the
recipient’s value of MacTagP. The assurance of a shared value for MacKey provides
assurance to the recipient that the provider also shares the secret value (Z) from which
MacKey and KeyData are derived (see Section 5.8). Thus, the recipient also has
assurance that the provider could compute KeyData correctly.

6. Zeroize the MacKey.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 98

8.3 Bilateral Key Confirmation for Key Agreement Schemes

Bilateral key confirmation is obtained by performing unilateral key confirmation in both
directions: from a provider U to a recipient V and from a provider V to a recipient U.
message_stringP is a six byte string with a value of “KC_2_U” or “KC_2_V” depending on
whether U or V is providing the MacTag. Bilateral key confirmation may be added to the C(2,2),
C(1,2) and C(0,2) schemes, as shown in the relevant subsections of Section 8.4.

8.4 Incorporating Key Confirmation into a Key Agreement Scheme

This section illustrates how to incorporate key confirmation (as described in Section 8.2 and
Section 8.3 above) into specific key agreement schemes of Section 6.

The flow depictions and accompanying discussions assume that the prerequisites of the scheme
have been satisfied, that the key agreement transaction has proceeded successfully (as described
in Section 6) through the stage of key derivation, and that the received MacTags are successfully
verified as specified in Section 5.2.2. If the MacTags do not verify, then key confirmation has
not been obtained, and the key agreement transaction should be discontinued.

8.4.1 C(2,2) Scheme with Unilateral Key Confirmation provided by U to V
Figure 9 depicts a typical flow for a C(2,2) scheme with unilateral key confirmation from U to V.
In this situation, party U, the scheme initiator, and party V, the scheme responder, assume the
roles of key confirmation provider and recipient, respectively. The successful completion of this
process provides party V with a) assurance that party U has derived the same secret Z value; and
b) assurance that party U has actively participated in the process.

To provide (and receive) key confirmation (as described in Section 8.2), U (and V) set
EphemDataU = EphemPubKeyU and EphemDataV = EphemPubKeyV:

Party U provides MacTagU to V (as specified in Section 8.2, with P = U and R = V), where
MacTagU is computed (as specified in Section 5.2.1) using

 MacDataU = “KC_1_U” || IDU || IDV || EphemPubKeyU || EphemPubKeyV {|| Text1}.

The recipient V uses the same format for MacDataU to compute its own version of MacTagU and
then verifies that it matches the value provided by U.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 99

Figure 9: C(2,2) Scheme with Unilateral Key Confirmation from Party U to Party V

8.4.2 C(2,2) Scheme with Unilateral Key Confirmation provided by V to U
Figure 10 depicts a typical flow for a C(2,2) scheme with unilateral key confirmation from V to
U. In this situation, party V, the scheme responder, and party U, the scheme initiator, assume the
roles of key confirmation provider and recipient, respectively. The successful completion of the
key confirmation process provides party U with a) assurance that party V has derived the same
secret Z value; and b) assurance that party V has actively participated in the process.

Figure 10: C(2,2) Scheme with Unilateral Key Confirmation from Party V to Party U

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 100

To provide (and receive) key confirmation (as described in Section 8.2), V (and U) set
EphemDataV = EphemPubKeyV and EphemDataU = EphemPubKeyU:

Party V provides MacTagV to U (as specified in Section 8.2, with P = V and R = U), where
MacTagV is computed (as specified in Section 5.2.1) using

 MacDataV = “KC_1_V” || IDV || IDU || EphemPubKeyV || EphemPubKeyU {|| Text1}.

The recipient U uses the same format for MacDataV to compute its own version of MacTagV and
then verifies that it matches the value provided by V.

Note that in Figure 10, party V’s ephemeral public key (EphemPubKeyV) and the MacTag
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes in the
combined key agreement/key confirmation process). They may also be sent separately.

8.4.3 C(2,2) Scheme with Bilateral Key Confirmation
Figure 11 depicts a typical flow for a C(2,2) scheme with bilateral key confirmation. In this
method, party U, the scheme initiator, and party V, the scheme responder, assume the roles of
both the provider and the recipient in order to obtain bilateral key confirmation. The successful
completion of the key confirmation process provides each party with assurance that the other
party has derived the same secret Z value, and also provides each party with assurance that the
other party has actively participated in the process.

To provide bilateral key confirmation (as described in Section 8.3), U and V exchange and verify
MacTags that have been computed (as specified in Sections 5.2.1) using EphemDataU =
EphemPubKeyU and EphemDataV = EphemPubKeyV:

Party V provides MacTagV to U (as specified in Section 8.2, with P = V and R = U); MacTagV is
computed by V (and verified by U) using

Figure 11: C(2,2) Scheme with Bilateral Key Confirmation

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 101

 MacDataV = “KC_2_V” || IDV || IDU || EphemPubKeyV || EphemPubKeyU {|| Text1}.

Party U provides MacTagU to V (as specified in Section 8.2, with P = U and R = V); MacTagU is
computed by U (and verified by V) using

 MacDataU = “KC_2_U” || IDU || IDV || EphemPubKeyU || EphemPubKeyV {|| Text1}.

Note that in Figure 11, party V’s ephemeral public key (EphemPubKeyV) and the MacTag
(MacTagV) are depicted as being sent in the same message (to reduce the number of passes in the
combined key agreement/key confirmation process). They may also be sent separately and if sent
separately, then the order in which the MacTags are sent could be reversed.

8.4.4 C(1,2) Scheme with Unilateral Key Confirmation provided by U to V
Figure 12 depicts a typical flow for a C(1,2) scheme with unilateral key confirmation from U to
V. In this situation, party U, the scheme initiator, and party V, the scheme respond er, assume the
roles of key confirmation provider and recipient, respectively. Since V does not contribute an
ephemeral public key during the key agreement process, a nonce (NonceV) shall be used in its
place during MacTag computations. The successful completion of the key confirmation process
provides party V with assurance that party U has derived the same secret Z value. If NonceV is a
random nonce (see Section 5.4), then party V also obtains assurance that party U has actively
participated in the process.

 Figure 12: C(1,2) Scheme with Unilateral Key Confirmation from Party U to Party V

To provide (and receive) key confirmation (as described in Section 8.2), U (and V) set
EphemDataU = EphemPubKeyU and EphemDataV = NonceV:

Party U provides MacTagU to V (as specified in Section 8.2, with P = U and R = V), where
MacTagU is computed (as specified in Section 5.2.1) using

 MacDataU = “KC_1_U” || IDU || IDV || EphemPubKeyU || NonceV {|| Text1}.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 102

The recipient V uses the same format for MacDataU to compute its own version of MacTagU and
then verifies that it matches the value provided by U.

8.4.5 C(1,2) Scheme with Unilateral Key Confirmation provided by V to U
Figure 13 depicts a typical flow for a C(1,2) scheme with unilateral key confirmation from V to U.
In this situation, party V, the scheme responder, and party U, the scheme initiator, assume the roles
of key confirmation provider and recipient, respectively. The successful completion of the key
confirmation process provides party U with a) assurance that party V has derived the same secret Z
value; and b) assurance that party V has actively participated in the process.

 Figure 13: C(1,2) Scheme with Unilateral Key Confirmation from Party V to Party U

To provide (and receive) key confirmation (as described in Section 8.2), both parties set
EphemDataV = Null and EphemDataU = EphemPubKeyU:

Party V provides MacTagV to U (as specified in Section 8.2, with P = V and R = U), where
MacTagV is computed (as specified in Section 5.2.1) using

 MacDataV = “KC_1_V” || IDV || IDU || EphemDataV || EphemPubKeyU {|| Text1}.

The recipient U uses the same format for MacDataV to compute its own version of MacTagV and
then verifies that it matches the value provided by V.

Party U

(Initiator

and KC

Recipient)

Party V

(Responder

and KC

Provider)

EphemPubKeyU

 MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

Key Confirmation

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 103

 8.4.6 C(1,2) Scheme with Bilateral Key Confirmation
Figure 14 depicts a typical flow for a C(1,2) scheme with bilateral key confirmation. In this
method, party U, the scheme initiator, and party V, the scheme responder, assume the roles of
both the provider and the recipient in order to obtain bilateral key confirmation. V shall
contribute a nonce (NonceV) to be used in the MacTag computations. The successful completion
of the key confirmation process provides each party with assurance that the other party has
derived the same secret Z value. Party U obtains assurance that party V has actively participated
in the process; if NonceV is a random nonce (see Section 5.4), then party V also obtains
assurance that party U has actively participated in the process.

 Figure 14: C(1,2) Scheme with Bilateral Key Confirmation

To provide bilateral key confirmation (as described in Section 8.3), U and V exchange and verify
MacTags that have been computed (as specified in Sections 5.2.1) using EphemDataU =
EphemPubKeyU and EphemDataV = NonceV:

Party V provides MacTagV to U (as specified in Section 8.2, with P = V and R = U); MacTagV is
computed by V (and verified by U) using

 MacDataV = “KC_2_V” || IDV || IDU || NonceV || EphemPubKeyU {|| Text1}.

Party U provides MacTagU to V (as specified in Section 8.2, with P = U and R = V); MacTagU is
computed by U (and verified by V) using

 MacDataU = “KC_2_U” || IDU || IDV || EphemPubKeyU || NonceV {|| Text1}.

Note that in Figure 14, party V’s nonce (NonceV) and the MacTag (MacTagV) are depicted as
being sent in the same message (to reduce the number of passes in the combined key
agreement/key confirmation process). They may also be sent separately and if sent separately,
then the order in which the MacTags are sent could be reversed

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 104

.

8.4.7 C(1,1) Scheme with Unilateral Key Confirmation provided by V to U
Figure 15 depicts a typical flow for a C(1,1) scheme with unilateral key confirmation from V to U.
In this situation, party V, the scheme responder, and party U, the scheme initiator, assume the roles
of key confirmation provider and recipient, respectively. The successful completion of the key
confirmation process provides party U with a) assurance that party V has derived the same secret Z
value; and b) assurance that party V has actively participated in the process.

 Figure 15: C(1,1) Scheme with Unilateral Key Confirmation from Party V to Party U

To provide (and receive) key confirmation (as described in Section 8.2), both parties set
EphemDataV = Null and EphemDataU = EphemPubKeyU:

Party V provides MacTagV to U (as specified in Section 8.2, with P = V and R = U), where
MacTagV is computed (as specified in Section 5.2.1) using

 MacDataV = “KC_1_V” || IDV || IDU || EphemDataV || EphemPubKeyU {|| Text1}.

The recipient U uses the same format for MacDataV to compute its own version of MacTagV and
then verifies that it matches the value provided by V.

8.4.8 C(0,2) Scheme with Unilateral Key Confirmation provided by U to V
Figure 16 depicts a typical flow for a C(0,2) scheme with unilateral key confirmation from U to V.
In this situation, party U, the scheme initiator, and party V, the scheme responder, assume the roles
of key confirmation provider and recipient, respectively. V shall contribute a nonce (NonceV) to be

Party U

(Initiator

and KC

Recipient

Party V

(Responder

and KC

Provider

EphemPubKeyU

MacTagV

Party V’s Static Public Key

C(1,1) Scheme

Key Confirmation

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 105

used in the MacTag computations. The successful completion of the key confirmation process
provides party V with assurance that party U has derived the same secret Z value. If NonceV is a
random nonce (see Section 5.4), then party V also obtains assurance that party U has actively
participated in the process.

 Figure 16: C(0,2) Scheme with Unilateral Key Confirmation from Party U to Party V

To provide (and receive) key confirmation (as described in Section 8.2), U (and V) set
EphemDataU = NonceU and EphemDataV = NonceV:

Party U provides MacTagU to V (as specified in Section 8.2, with P = U and R = V), where
MacTagU is computed (as specified in Section 5.2.1) using

 MacDataU = “KC_1_U” || IDU || IDV || NonceU || NonceV {|| Text1}.

The recipient V uses the same format for MacDataU to compute its own version of MacTagU and
then verifies that it matches the value provided by U.

8.4.9 C(0,2) Scheme with Unilateral Key Confirmation provided by V to U
Figure 17 depicts a typical flow for a C(0,2) scheme with unilateral key confirmation from V to
U. In this situation, party V, the scheme responder, and party U, the scheme initiator, assume the
roles of key confirmation provider and recipient, respectively. The successful completion of the
key confirmation process provides party U with assurance that party V has derived the same
secret Z value; if NonceU is a random nonce (see Section 5.4), then party U also obtains
assurance that party V has actively participated in the process.

MacTagU

Party U

(Initiator)

Party V

(Responder)

NonceV,

Party U’s Static Public Key

Party V’s Static Public Key

(Recipient)

(Recipient)(Provider)

(Provider)

Key Confirmation

C(0,2) Scheme

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 106

 Figure 17: C(0,2) Scheme with Unilateral Key Confirmation from Party V to Party U

To provide (and receive) key confirmation (as described in Section 8.2), Both parties set
EphemDataV = Null and EphemDataU = NonceU:

Party V provides MacTagV to U (as specified in 8.2, with P = V and R = U), where MacTagV is
computed (as specified in Section 5.2.1) using

 MacDataV = “KC_1_V” || IDV || IDU || EphemDataV || NonceU {|| Text1}.

The recipient U uses the same format for MacDataV to compute its own version of MacTagV, and
then verifies that it matches the value provided by V.

8.4.10 C(0,2) Scheme with Bilateral Key Confirmation
Figure 18 depicts a typical flow for a C(0,2) scheme with bilateral key confirmation. In this method,
party U, the scheme initiator, and party V, the scheme responder, assume the roles of both the
provider and the recipient in order to obtain bilateral key confirmation. V shall contribute a nonce
(NonceV) to be used in the MacTag computations. The successful completion of the key
confirmation process provides each party with assurance that the other party has derived the same
secret Z value. If NonceU is a random nonce (see Section 5.4), then party U obtains assurance that
party V has actively participated in the process; if NonceV is a random nonce, then party V obtains
assurance that party U has actively participated in the process.

Party U
(Initiator

and KC
Recipient)

Party V
(Responder
and KC
Provider)

NonceU

MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

Key Confirmation

C(0,2) Scheme

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 107

Figure 18: C(0,2) Scheme with Bilateral Key Confirmation

To provide bilateral key confirmation (as described in Section 8.3), U and V exchange and verify
MacTags that have been computed (as specified in Sections 5.2.1) using EphemDataU = NonceU
and EphemDataV = NonceV:

Party V provides MacTagV to U (as specified in Section 8.2, with P = V and R = U); MacTagV is
computed by V (and verified by U) using

 MacDataV = “KC_2_V” || IDV || IDU || NonceV || NonceU {|| Text1}.

Party U provides MacTagU to V (as specified in Section 8.2, with P = U and R = V); MacTagU is
computed by U (and verified by V) using

 MacDataU = “KC_2_U” || IDU || IDV || NonceU || NonceV {|| Text1}.

Note that in Figure 18, party V’s nonce (NonceV) and the MacTag (MacTagV) are depicted as
being sent in the same message (to reduce the number of passes in the combined key
agreement/key confirmation process). They may also be sent separately and if sent separately,
then the order in which the MacTags are sent could be reversed

MacTagU

Party U

(Initiator)

Party V

(Responder)

NonceU

NonceV, MacTagV

Party U’s Static Public Key

Party V’s Static Public Key

(Recipient) (Provider)

(Provider)

Key Confirmation

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 108

9. Key Recovery

For some applications, the secret keying material used to protect data may need to be recovered
(for example, if the normal reference copy of the secret keying material is lost or corrupted). In
this case, either the secret keying material or sufficient information to reconstruct the secret
keying material needs to be available (for example, the keys, domain parameters and other inputs
to the scheme used to perform the key establishment process).

Keys used during the key establishment process shall be handled in accordance with the
following:

1. A static key pair may be saved (see the Recommendation for Key Management [7] for
recommended protections); for example, a static public key could be saved in a public
key certificate.

2. An ephemeral public key may be saved.

3. An ephemeral private key shall be destroyed after use and, therefore, shall not be
recoverable.

4. A symmetric key may be saved.

Note: This implies that keys derived from schemes where both parties generate ephemeral key
pairs (see Section 6.1) cannot be made recoverable by reconstruction of the secret keying
material by parties requiring the ephemeral private key in their calculations.. For those schemes
where only the initiator generates an ephemeral key pair (see Section 6.2), only the responder
can recover the secret keying material by reconstruction.

General guidance on key recovery and the protections required for each type of key is provided
in the Recommendation for Key Management [7].

10. Implementation Validation

When the NIST Cryptographic Module Validation Program (CMVP) has established a validation
program for this Recommendation, a vendor shall have its implementation tested and validated
by the CMVP in order to claim conformance to this Recommendation. Information on NIST’s
cryptographic module testing program is available at http://csrc.nist.gov/cryptval/.

An implementation claiming conformance to this Recommendation shall include one or more of
the following capabilities:

• Domain parameter generation as specified in Section 5.5.1.

• Explicit domain parameter validation as specified in Section 5.5.2, item 2.

• Key pair generation as specified in Section 5.6.1; documentation shall include how
assurance of domain parameter validity is expected to be achieved.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 109

• Explicit public key validation as specified in Section 5.6.2.4 for FFC or as specified in
Sections 5.6.2.5 or 5.6.2.6 for ECC.

• A key agreement scheme from Section 6, together with a key derivation function from
Section 5.8; if key confirmation is also claimed, the appropriate key confirmation
technique from Section 8 shall be used. Documentation shall include how assurance of
private key possession and of assurance of domain parameter and public key validity are
expected to be achieved by both the owner and the recipient.

• A key transport scheme as specified in Section 7.

An implementer shall also identify the appropriate specifics of the implementation, including:

• The security strength(s) of supported cryptographic algorithms ; this will determine the
parameter set requirements (see Tables 1 and 2 in Section 5.5.1),

• The hash function (see Section 5.1),

• The MAC key size(s) (see Tables 1 and 2 in Section 5.5.1),

• The MAC length(s) (see Tables 1 and 2 in Section 5.5.1),

• The type of cryptography: FFC or ECC,

• The key schemes available (see Section 6),

• The key derivation function to be used (see Section 5.8),

• The type of nonces to be generated (see Section 5.4),

• The NIST Recommended elliptic curve(s) available, and

• The key confirmation scheme (see Section 8).

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 110

Appendix A: Summary of Differences between this
Recommendation and ANS X9 Standards (Informative)

This list is informational and not meant to be exhaustive, but is intended to summarize important
differences between this Recommendation and the indicated ANS X9 standards. In general, this
Recommendation can be seen as being more restrictive than the ANS X9 standards, but is
derived from them. The list of differences is as follows:

1. ANS X9.42 defines MacData as “ANSI X9.42 Testing Message”. ANS X9.63 does not
address implementation validation at this level of detail. Note that the implementation
test message used for NIST validation is a different text string from the implementation
test message for ANS X9.42; therefore, conformance to the method in this
Recommendation does not conform with the ANS X9.42 method. See Section 5.2.3 of
this Recommendation for more information.

2. Random generation and validation of FFC and ECC domain parameters are being
extended to (a) specify the use of all Approved hash algorithms for generating and
validating domain parameters supporting larger key sizes, (b) support the optional use of
the Shawe-Taylor algorithm to construct and validate FFC primes and (c) support the
verifiably random generation of the generator of the subgroup. See the FIPS 186-3[3]
draft and the ANS X9.62-2[13] revision draft.

3. For FFC domain parameters: (a) Three specific sizes are specified for the prime p, rather
than multiples of 256 bits, starting with a p of size 1024 bits, as is specified in ANS
X9.42, (b) The size of q (subgroup order) is specified, unlike ANS X9.42 where the size
of q has a minimum length of 160 bits, and (c) ANS X9.42 only identifies SEED and
pgenCounter as being among the domain parameters in its Appendix A, but this
Recommendation lists them explicitly to be consistent with ANS X9.63. FFC domain
parameters that conform to this Recommendation in this area also conform to ANS
X9.42, although the reverse is not necessarily true. See Section 5.5.1.1 of this
Recommendation for more information.

4. For ECC domain parameters: The cofactor is 32 bits or less, depending on the selected
subgroup order, which is more restrictive than ANS X9.63. ECC domain parameters that
conform to this Recommendation also conform to ANS X9.63, although the reverse is not
necessarily true. See Section 5.5.1.2 of this Recommendation for more information.

5. Some schemes in ANS X9.42 and X9.63 allow one set of domain parameters to be used
with static keys and a different set of domain parameters to be used with ephemeral keys
in the same scheme. This Recommendation, however, requires the use of only one set of
domain parameters in one scheme; that is, the same set of domain parameters is used with
the static and ephemeral keys in any given scheme. Therefore the ANS X9.42 dhHybrid2
scheme is not allowed. See Section 5.5 of this Recommendation for more information.
Also, the ANS X9.63 Combined Unified Model is not allowed. The ANS X9.63 Station

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 111

to Station (STS) method is not specified in this Recommendation; STS is a protocol that
is based upon the ECC Ephemeral Unified Model scheme and, as a protocol, is not
prohibited.

6. Assurances of the arithmetic validity of a public key are required in this
Recommendation. Assurance of validity is optional in ANS X9.42, but required in ANS
X9.63. In both cases, the means of obtaining that assurance is different than in this
Recommendation. See Section 5.6.2 of this Recommendation for more information.

7. Methods for a user to receive assurance of possession of the private key associated with a
given public key are specified in Section 5.6.3 of this Recommendation.

8. Requirements are specifically listed for keys, including requirements specific to static
keys and requirements specific to ephemeral keys. See Section 5.6.4 of this
Recommendation for details.

9. ANS X9.63 specifies both cofactor and non-cofactor schemes. For this Recommendation,
only ECC cofactor schemes are used. The use of an ECC scheme that conforms to this
Recommendation also conforms to ANS X9.63, although the reverse is not necessarily
true. See Section 5.7 of this Recommendation for details.

10. Regarding the key derivation function (KDF):

a. The concatenation key derivation function (KDF) of Section 5.8.1 is the preferred
KDF; the ASN.1 KDF of Section 5.8.2, the IKEv2 KDF of Section 5.8.3 and the PRF
TLS KDF of Section 5.8.4 are allowed; the use of one of these allowed KDFs is to be
used only when both parties agree on its use. ANS X9.42 contains the concatenation and
ASN.1 methods, but does not indicate a preference. ANS X9.63 specifies only the
concatenation method.

b. The KDFs in this Recommendation require the input of the identifiers of the
communicating parties; such information is not required in ANS X9.42 and X9.63. In
order to conform with this standard the ANS X9.42 and X9.63 KDFs must comply with
all the KDF requirements of this Recommendation. In particular, the party U and party V
identifiers (IDU) and (IDV) must be incorporated into the key derivation as specified in
Section 5.8.1 or 5.8.2.

c. The shared secret is zeroized before outputting any portion of the
DerivedKeyingMaterial output; this implies that the entire DerivedKeyingMaterial is
computed before outputting any portion of it. The ANS X9.42 and X9.63 standards do
not indicate when the shared secret needs to be zeroized, deleted or destroyed.

11. FFC and ECC key transport use an Approved key-wrapping algorithm, such as the AES
key-wrapping algorithm. ANS X9.63 specifies the ECIES method, which is not allowed
in this Recommendation. ANS X9.42 does not specify a key transport method. Therefore,
the use of a key transport method that conforms to this Recommendation does not
conform to the method in ANS X9.63. See Section 7.2 for details.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 112

12. There is a comprehensive specification in this Recommendation of approved ways to do
key confirmation (KC) when KC is desired as part of the key establishment process. See
Section 8 of this Recommendation for details. Key confirmation is not discussed in ANS
X9.42, but a few examples of key confirmation are provided in ANS X9.63.

13. This Recommendation specifies that an ephemeral key is used for exactly one
transaction, with the exception that the sender may use the same ephemeral key pair in
multiple DLC-based Key Transport transactions if the same secret keying material is
being transported in each transaction and if all these transactions occur simultaneously
(or within a short period of time). ANS X9.42 and X9.63 do not allow this exception.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 113

Appendix B: Mapping of Key Derivation Functions (KDFs) to
the KDF Template (Informative)

B.1 KDF Template

The following template describes the form of a generic key derivation function.

Function call: kdf (SeedKey, OtherInput),

where OtherInput includes contextID, keydatalen {and SharedInfo}.

Fixed Values (implementation dependent):
1. blklen: an integer equal to the length (in bits) of the output of the pseudorandom function

used to derive blocks of secret keying material.
2. MaxAllowed: an integer that specifies the maximum number of blocks of secret keying

material that can be produced by repeated use of the pseudorandom function during a
single call to the key derivation function.

Input:
1. SeedKey: a bit string that is a shared secret.

2. contextID : a bit string identifying the purpose and/or parties for which the secret keying
material is being generated; contextID is encoded in a prefix-free manner - meaning that,
in addition to being a one-to-one function of the represented data, the encoding ensures
that one contextID bit string can never appear as even the initial portion of another
contextID bit string. This can be accomplished, for example, by using ASN.1 DER
encoding, or, by constructing contextID as the concatenation of a specific sequence of
fixed- length bit strings.

In this Recommendation, contextID includes IDU and IDV, the bit strings that serve as
identifiers of the two parties (U and V) who are participating in the key establishment
process; contextID may also include an AlgorithmID that indicates how to parse the
derived secret keying material and allocate the resulting bit strings to various algorithms.

3. keydatalen: a positive integer that indicates the length (in bits) of the secret keying
material to be generated; keydatalen is no more than blklen × MaxAllowed.

4. SharedInfo (optional): a bit string consisting of data shared by the parties generating the
secret keying material.

Local Quantities:

1. FixedString.

2. index.

3. block.

4. reps.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 114

Auxiliary Functions:

1. InitString (contextID, {SharedInfo}): initializes FixedString.

2. InitVal ({SeedKey,} {FixedString }): initializes index. (It may be a constant.)

3. Update (index, {SeedKey}): updates index.

4. PRF (SeedKey, index, {block,} FixedString): a “pseudorandom” function.

Process:
1. Compute reps = keydatalen / blklen.

2. If (reps > MaxAllowed), then ABORT: output “invalid” and stop.

3. Compute FixedString = InitString(contextID, {SharedInfo}).

4. Compute index0 = InitVal({SeedKey,} { FixedString }).

5. Set block0 = Null.

6. For i = 1 to reps by 1, do the following:

6.1 Compute blocki = PRF(SeedKey, indexi-1, {blocki-1,} FixedString).

6.2 Compute indexi = Update(indexi-1, {SeedKey}).

7. Set DerivedKeyingMaterial = leftmost keydatalen bits of block1 || … || block reps.

Output:
The bit string DerivedKeyingMaterial of length keydatalen bits (or “invalid”).
Any attempt to call the key derivation function with keydatalen greater than blklen ×
MaxAllowed causes the KDF to output “invalid” and stop without outputting
DerivedKeyingMaterial.

Notes:
1. The function Update (indexi-1, {SeedKey}) provides assurance that the values of indexi are

distinct for i = 0, 1, … reps-1.

Examples: indexi = indexi-1 + 1 (treating index as a fixed- length counter), or

indexi = HMAC (SeedKey, indexi-1),

where HMAC is the keyed-hash MAC (HMAC) algorithm specified in FIPS 198 (based
on an Approved hash function).

2. FixedString includes contextID as a substring, and is encoded in a prefix-free fashion. As
before, the “prefix-free” condition requires that, in addition to being a one-to-one
function of the represented data, the encoding must ensure that one FixedString bit string
can never appear as the initial portion of another FixedString bit string.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 115

3. PRF (SeedKey, indexi-1, {blocki-1,} FixedString) is collision-resistant, and impractical to
invert (even if indexi-1, blocki-1, and FixedString are known).

Examples: blocki = H(indexi-1 || SeedKey || FixedString),

blocki = H(indexi-1 || FixedString || SeedKey),

blocki = HMAC(SeedKey, indexi-1 || FixedString), and

blocki = HMAC(SeedKey, block i-1 || FixedString || indexi-1),

where H is an Approved hash function, and HMAC is the keyed-hash MAC (HMAC)
algorithm specified in FIPS 198 (based on an Approved hash function).

The ordering of the input to a hash function used by a KDF should put the more variable
input components first (leftmost) and the least variable components last (rightmost). For
example, a counter should usually be placed to the left of a shared secret. This is stated as
a “should”, as there can be reasons to order the input differently (for example, when the
shared secret is used as the key of a keyed-hash function); however, in the absence of
specific reasons otherwise, this is the preferred ordering.

B.2 Mapping between the KDF template and the Concatenation KDF

The Concatenation Key Derivation Function of Section 5.8.1 can be obtained from the KDF
template in Appendix B.1 by means of the following identifications and definitions of auxiliary
functions:

SeedKey = Z.

blklen = hashlen.

MaxAllowed = 232 −1.

indexi = counter (subscript understood by context), treated as a 32-bit counter.

Index0 = InitVal() = the 32-bit, big-endian bit string 0000000116.

FixedString = InitString(contextID, {SharedInfo}) = contextID { || SharedInfo }.

blocki = PRF(SeedKey, indexi-1, FixedString) = Hashi.

Update(indexi-1) = indexi-1 + 1 (modulo 232).

PRF(SeedKey, indexi-1, FixedString) = H(indexi-1 || SeedKey || FixedString),
where H is the Approved hash function.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 116

B.3 Mapping between the KDF template and the ASN.1 KDF

The ASN.1 Key Derivation Function is very similar to the key derivation function that would be
obtained from the KDF template in B.1 by means of the following identifications and definitions
of auxiliary functions:

SeedKey = Z.

contextID = the AlgorithmID, PartyUInfo, and PartyVInfo information in OtherInfo.

SharedInfo = the SuppPrivInfo and SuppPubInfo information (if any) in OtherInfo.

blklen = hashlen.

MaxAllowed = 232 −1.

indexi = counter (subscript understood by context), treated as a 32-bit counter.

index0 = InitVal () = the unsigned, 32-bit integer 0000000116.

FixedString = InitString (contextID, SharedInfo) = contextID || SharedInfo.

blocki = PRF(SeedKey, indexi-1, FixedString) = hi.

Update (indexi-1) = indexi-1 + 1 (modulo 232).

PRF(SeedKey, indexi-1, FixedString) = H(indexi-1 || FixedString || SeedKey),
where H is the Approved hash function.

The difference between the KDF described above and the ASN.1 Key Derivation Function
defined in Section 5.8.2 is that the varying counter (which plays the role of indexi-1 in the PRF
evaluation), together with the fixed values that determine the components of contextID, and
SharedInfo are bound together in the ASN.1 DER encoded bit string OtherInfo, which replaces
indexi-1 || FixedString in the input to the hash function. Thus, to obtain the ASN.1 Key
Derivation Function, one must deviate slightly from the KDF template and set

blocki = PRF(SeedKey, OtherInfo) = H(OtherInfo || SeedKey).

B.4 Mapping between the KDF template and the IKEv2 KDF

For the purposes of establishing an IKEv2 security association, this Recommendation permits
(with certain restrictions) IKEv2-style key derivation, as described in [16], to derive secret
keying material from an IKEv2 SKEYSEED — where SKEYSEED is derived from a shared
secret Z resulting from the use of a key agreement scheme described in this document. As
required by Section 5.8.3, the following conditions are imposed:

• The PRF employed in all key derivations (including the derivation of SKEYSEED) use
the HMAC specified in FIPS 198 (based on an Approved hash function); and

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 117

• All traces of the shared secret Z (denoted “g^ir” in the IKEv2 documentation) are
destroyed immediately following the derivation of SKEYSEED.

To facilitate a comparison of the IKEv2 technique with the key derivation functions described in
this Recommendation, the IKEv2 Key Derivation Function, PRF-IKE(SeedKey, contextID,
keydatalen, SharedInfo), which is an instantiation of the generic KDF described in Section 5.8, is
defined using:

blklen = hashlen, the length (in bits) of the HMAC output.

MaxAllowed = 28 −1.

FixedString = InitString (contextID, SharedInfo) = SharedInfo || contextID.

index = an 8-bit counter.

index0 = InitVal () = the byte 0116.

Update (indexi-1) = indexi-1 + 1 (modulo 256).

PRF (SeedKey, indexi-1, blocki-1, FixedString) =

HMAC (SKEYSEED, blocki-1 || FixedString || indexi-1).

When an IKEv2 security association is first established, the two parties each compute

SK_d || SK_ai || SK_ar || SK_ei || SK_er || SK_pi || SK_pr =

 PRF-IKE(SKEYSEED, SPIi || SPIr, keydatalen, Ni || Nr),

with SKEYSEED = HMAC(Ni || Nr, Z) — where Ni and Nr are nonces supplied by the IKE_SA
initiator and responder, respectively, and SPIi and SPIr are their 64-bit security parameter
indices. The shared secret Z is obtained from a C(2,0)-type key agreement.

Additional keying material is derived, as necessary, by (repeated) calls to

 PRF-IKE (SK_d, contextID, keydatalen, SharedInfo),

with contextID set equal to the null string and SharedInfo = { Z′ || }Ni′ || Nr′ — where the
(optional) Z′ is a newly established C(2,0)-type shared secret, and Ni′ and Nr′ are nonces
supplied by the IKE_SA initiator and responder, respectively. (See [16] for details.)
Note that PRF-IKE is allowed for use with IKEv2 only.

B.5 Mapping between the KDF template and the TLS KDF

For the sake of backwards-compatability, this Recommendation permits TLS-style key
derivation, as described in RFC 2246 [14], to derive a TLS master_secret from a TLS
pre_master_secret in cases where the pre_master_secret is a shared secret Z resulting from the
use of a key agreement scheme described in this document (as part of the TLS handshake

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 118

protocol). As recommended in RFC 2246 and required in Section 5.8.4, all traces of the
pre_master_secret are destroyed immediately following the derivation of the master_secret.
To facilitate a comparison of the TLS technique with the key derivation functions described in
this Recommendation, the TLS Key Derivation Function, PRF-TLS(K, J, slen), is described,
where K is an n-byte secret, J is a bit string formed from a label and nonces; and slen is the
desired number of bytes of output keying material.
PRF-TLS is essentially the same as the PRF defined in RFC 2246 [14]. It is equal to the
exclusive-or of the output from a pair of related generic-type key derivation functions, KDF1 and
KDF2, each computed according to the KDF template of Section 5.8, using:

SeedKey = K1 for KDF1, then K2 for KDF2 — where K1 and K2 are obtained from the shared
n-byte secret K by using the first n/2 bytes of K for K1 and the last n/2 bytes of K for
K2. (Note that if n is odd, then the last byte of K1 will be the same as the first byte of K2.)

contextID = the label portion of J, specifying the intended use of the output keying material.

keydatalen = 8 × slen.

SharedInfo = the concatenation of the (fixed- length) nonces from J — one supplied by the
TLS client and the other supplied by the TLS server.

blklen = 128 for KDF1, then 160 for KDF2.

Although it is not specified in RFC 2246 [14], for the purposes of this document
 MaxAllowed is 232 −1.

FixedString = InitString (contextID, SharedInfo) = contextID || SharedInfo = J.

index = a bit string of length blklen.

index0 = InitVal (SeedKey, FixedString) = HMAC (SeedKey, FixedString)

Update (indexi-1, SeedKey) = HMAC (SeedKey, index i-1).

PRF (SeedKey, indexi-1, FixedString) = HMAC (SeedKey, indexi-1 || FixedString).

The HMAC is based on MD5 for KDF1, but is based on SHA-1 for KDF2. The use of MD5 is
allowed in the PRF-TLS KDF only; MD5 is not used as a general hash function.

In summary, using the notation and definitions above,

PRF-TLS(K, J, slen) = KDF1(K1, contextID, keydatalen, SharedInfo)

 ⊕ KDF2(K2, contextID, keydatalen, SharedInfo),

where J = contextID || SharedInfo, keydatalen = 8 × slen, and ⊕ denotes a bit-wise exclusive-or.
In the current TLS handshake protocol, a 48-byte master_secret is derived by setting

 J = “master secret” || ClientHello.random || ServerHello.random,

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 119

where ClientHello.random and ServerHello.random are 32-byte nonces generated by the client
and server, respectively, and then computing

master_secret = PRF-TLS (pre_master_secret, J, 48).

Warning!! PRF-TLS is allowed for use with TLS only.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 120

Appendix C: Data Conversions (Normative)

C.1 Integer-to-Byte String Conversion

Input: A non-negative integer C and the intended length n of the byte string satisfying

 28n > C

Output: A byte string O of length n bytes.

1. Let O1, O2,…, On be the bytes of O from leftmost to rightmost.

2. The bytes of O shall satisfy:

 C = Σ28(n-i)Oi for i = 1 to n.

C.2 Field-Element-to-Byte String Conversion

Input: An element α in the field Fq.

Output: A byte string S of length n = t / 8 bytes, where t = log2 q.

1. If q is an odd prime, then α must be an integer in the interval [0, q - 1]; α shall be
converted to a byte string of length n bytes using the technique specified in Appendix C.1
above.

2. If q = 2m, then α must be a bit string of length m bits. Let s1, s2, …, sm be the bits of α
from leftmost to rightmost. Let S1, S2, …, Sn be the bytes of S from leftmost to rightmost.
The rightmost bit sm shall become the rightmost bit of the last byte Sn, and so on through
the leftmost bit s1, which shall become the (8n - m + 1)th bit of the first byte S1. The
leftmost (8n - m) bits of the first byte S1 shall be zero.

C.3 Field-Element-to-Integer Conversion

Input: An element α in the field Fq.

Output: An integer x.

1. If q is an odd prime, then x = α (no conversion is required).

2. If q = 2m, then α must be a bit string of length m bits. Let s1, s2, …, sm be the bits of α
from leftmost to rightmost. α shall be converted to an integer x satisfying:

x = Σ2(m-i) si for i = 1 to m.

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 121

Appendix D: Examples (Informative)

This Appendix will supply worked examples of key establishment schemes.

D.1 FFC Examples

(To be added)

D.2 ECC Examples

(To be added)

NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using
Discrete Logarithm Cryptography

DRAFT July 2005 DRAFT

 122

Appendix E: References (Informative)

[1] FIPS 140-2, Security requirements for Cryptographic Modules, May 25, 2001.

[2] FIPS 180-2, Secure Hash Standard, August 2002.

[3] FIPS 186-3 (Draft), Digital Signature Standard, anticipated in 2005.

[4] FIPS 197, Advanced Encryption Standard, November 2001.

[5] FIPS 198, The Keyed-Hash Message Authentication Code (HMAC), March 2002.

[6] NIST SP 800-38B (Draft), Recommendation for Block Cipher Modes of Operation: The
CMAC Mode for Authentication, May 2005.

[7] NIST SP 800-57 (Draft), Recommendation for Key Management, January 2003.

[8] AES Key Wrap Specification, NIST, November 16, 2001.

[9] ANS X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA).

[10] ANS X9.42-2001, Public Key Cryptography for the Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography.

[11] ANS X9.44 (Draft), Public Key Cryptography for the Financial Services Industry: Key
Establishment Using Integer Factorization Cryptography, December 2002.

[12] ANS X9.63-2001, Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography.

[13] ANS X9.62-2 (Draft) Elliptic Curve Digital Signature Algorithm (Revised), 2005.

[14] RFC 2246, The TLS Protocol, Version 1.0, dated January, 1999.

[15] IEEE 802.11i-2004, Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications; Medium Access Control (MAC) Security Enhancements.

[16] Internet Key Exchange (IKEv2) Protocol, September 23, 2004.

