
Operating System Protection

Through Program Evolution

by Dr. Frederick B. Cohen ‡

In this paper, we introduce the use of program evolution as a technique for defending
against automated attacks on operating systems.

Search terms: Trusted Systems, Computational Complexity, Program Evolution, Operating
Systems

Copyright c© 1992, Fred Cohen
ALL RIGHTS RESERVED

‡ This research was funded by ASP, PO Box 81270, Pittsburgh, PA 15217, USA

1 Background and Introduction

From the beginning of electronic computing until 15 years ago, the ‘game’ of attack and
defense was played on a system by system basis, with defenders relying on physical security
and ad-hoc operating system protection methods and attackers guessing passwords or ex-
ploiting errors and omissions to bypass normal system controls. Over the last 15 years, the
computing environment has changed dramatically, with widespread physical distribution of
computing power, almost complete loss of physical control over computing hardware, and a
dramatic increase in the networking of computers, but defenses have not changed substan-
tially in terms of their reliance on physical security and ad-hoc defenses. As a result, we see
new classes of attacks such as computer viruses, which exploit the lack of physical control
and fundamental weakness of existing logical controls to spread transitively throughout the
computing world. Even the best protection systems available today can quickly and easily
be defeated by anyone with physical access and ample knowledge, or by the application of
that expertise in a widespread computer virus attack.

One of the major factors in the successful application of information protection tech-
niques is the exploitation of computational advantage. Computational advantage shows up
historically in cryptography, where Shannon’s theory [?] clearly demonstrates the effect of
‘workload’ on the complexity of cryptanalysis and introduces the concepts of diffusion and
confusion as they relate to statistical attacks on cryptosystems. Most modern cryptosystems
exploit this as their primary defense [?] [?]. The same basic principle applies in computer
virus analysis [?] [?] in which evolutionary viruses drive the complexity of detection and
eradication up dramatically and in password protection in which we try to drive the number
of guesses required for a successful attack up by limiting the use of obvious passwords [?].
As we will see, one of the major reasons attacks succeed is because of the static nature of
defense, and the dynamic nature of attack.

1.1 The Ultimate Attack

The ultimate attack against any system begins with physical access, and proceeds to disas-
sembly and reverse engineering of whatever programmed defenses are in place. Even with a
cryptographic key provided by the user, an attacker can modify the mechanism to examine
and exploit the key, given ample physical access. Eventually, the attacker can remove the
defenses by finding decision points and altering them to yield altered decisions.

Without physical protection, nobody has ever found a defense against this attack, and
it is unlikely that anyone ever will. The reason is that any protection scheme other than a
physical one depends on the operation of a finite state machine, and ultimately, any finite

1

state machine can be examined and modified at will, given enough time and effort. The best
we can ever do is delay attack by increasing the complexity of making desired alterations.

With any static defense in widespread use, attackers can and may eventually find a
technique to bypass protection and incorporate the technique in a virus. In the modern
environment, this means that a virus writer can eventually exploit such a weakness to evade
protection on a large number of systems. This has already taken place to some degree,
with attackers producing computer viruses designed to exploit low-level operating system
assumptions and bypass specific defensive products and techniques. [?]

To the extent that defenses have generic weaknesses, this problem will continue unabated,
but even in the cases of defenses with no known generic weaknesses, attackers may succeed
by using the ultimate attack and programming the results into a virus. Since the program
that runs first ‘wins’ 1, and a virus in the boot block of a floppy disk runs first on most
modern computer systems, an attacker might exploit knowledge gained from an ultimate
attack on one system by placing the successful technique in a boot block initiated virus, and
carry the attack to numerous machines. In the case of low-level viruses operating on IBM
compatible PCs, the same attacks that work against the DOS operating system (e.g. The
‘Stoned’ virus and its variants) succeed even when the Unix operating system is used.

1.2 The Ultimate Defense

The ultimate defense is to drive the complexity of the ultimate attack up so high that the cost
of attack is too high to be worth performing. This is, in effect, security through obscurity,
and it is our general conclusion that all technical information protection in computer systems
relies at some level either on physical protection, security through obscurity, or combinations
thereof.

The goal of security through obscurity is to make the difficulty of attack so great that
in practice, it is not worth performing, even though it could eventually be successful. Suc-
cessful attacks against obscurity defenses depend on the ability to guess some key piece of
information. The most obvious example is attacking and defending passwords, and since this
problem demonstrates precisely the issues at hand, we will use it as an example. In password
protection, there are generally three aspects to making attack difficult. One aspect is making
the size of the password space large, so that the potential number of guesses required for
an attack is enormous. The second aspect is spreading the probability density out so that
there is relatively little advantage to searching the space selectively. This is basically the
same as Shannon’s concept of diffusion. The third aspect is obscuring the stored password

1i.e. it can simulate the hardware and alter or examine any information developed during operation, forge
or prevent auditing, and deny services at will

2

information so that the attacker cannot simply read it in stored form. This is basically the
same as Shannon’s concept of confusion.

In successful password attacks, the size of the password space is usually substantial, but
the way people select passwords leads to very small high probability subspaces. For example,
the user’s identification to the system spelled backwards is a very common authentication
string. In numerous studies performed over many years, the vast majority of user’s passwords
could be guessed in only a few minutes [?]. The third aspect of password protection usually
involves using access controls in combination with trapdoor encryption to drive up the time
required to try substantial numbers of guesses.

In the case of current operating systems, the size of the space is enormous, consisting of
all programs that fit in the computer’s memory, but the operating system may only have a
very small number of versions, all of which are almost identical, yielding a highly coherent
subspace consisting of only a few very closely tied points. Thus, only a few guesses are
required to determine precisely which version of the operating system is in use, and even
that may not be required for many attacks. Operating systems also provide no confusion
in that the part of the program that performs any given operation is immediately apparent
to the knowledgeable attacker. For this reason, low-level operating system attack is quite
simple.

The problem for defenders is to find a way to increase the difficulty of operating system
attack by reducing coherence. The ultimate goal is to obscure defenses so as to make attackers
require repeated use of the ultimate attack in order to impact substantial numbers of systems.
One solution is to provide each computer with a sound and unique defense. This would tend
to make it infeasible to design an automated attack that could systematically bypass all
of the defenses, but then we would have to design a new defense for each system, and the
costs of defense would probably become intolerable. We could trade off costs for probability
of attack by implementing some fixed number of different defenses, thus requiring a fixed
number of ultimate attacks for complete success. This is essentially the situation in the world
today, where a wide variety of ad-hoc defenses are on the market. Unfortunately, many of
these defenses fall to the same classes of attack, and the number is sufficiently small that
defeating most of them requires relatively little effort or expense.

A more practical solution to this problem might be the use of evolutionary defenses.
In order to make such a defensive strategy cost effective for numerous variations (e.g. one
per computer worldwide), we probably have to provide some sort of automation. If the
automation is to be effective, it must produce a large search space and provide a substantial
degree of confusion, and diffusion. This then is the goal of evolutionary defenses.

Evolution can be provided in many ways and at many different places, ranging from
a small finite number of defenses provided by different vendors, and extending toward a

3

defensive system that evolves itself during each system call. With more evolution, we get
less performance, but higher cost of attack. Thus, as in all protection functions, there is a
price to pay for increased protection. Assuming we can find reasonably efficient mechanisms
for effective evolution, we may be able to create a great deal of diversity at practically no
cost to the end-user, while making the cost of large scale attack very high. As a very pleasant
side effect, the ultimate attack may become necessary for each system under attack. In other
words, except for endemic flaws, attackers may again be reduced to a case-by-case expert
attack and defense scenario involving physical access.

1.3 What We Hope to Explore

In this paper, we look at how we can drive up complexity of attack with evolutionary
defenses. We begin by looking at program evolution through several examples that show how
complexity may be driven up. Next, we explore how evolution can be exploited to provide
practical evolving defenses, and consider ways around evolutionary defenses. Finally, we
summarize results, draw conclusions, and propose further work.

2 Techniques for Program Evolution

We will consider two programs equivalent if, given identical input sequences, they produce
identical output sequences. The equivalence of two programs is undecidable as is the de-
termination of whether one program can evolve from another [?]. This result would seem
to indicate that evolution has the potential for increasing complexity of analysis, and thus
difficulty of attack. In a practical operating system design, we may also have very stringent
requirements on the space and time used by the protection mechanism, and certain instruc-
tion sequences may be highly undesirable because they impact some other aspect of system
operation or are incompatible across some similar machines. For this reason, we may not
be able to reach the levels of complexity required to eliminate concerted human attack, but
we may succeed in increasing the complexity of automated attacks to a level where the time
required for attack is sufficient to have noticeable performance impacts, even to a level where
no attacker is able to design a strong enough attack to defeat more than a small number of
evolutions.

We know that evolution is as general as Turing machine computation [?] [?], and that an
exhaustive set of equivalent programs is easily described mathematically (i.e. the definition of
equivalence), but this is not particularly helpful in terms of designing practical evolutionary
schemes. We now describe a number of practical techniques we have explored for program
evolution and some results regarding the space, time, and complexity issues introduced by

4

these techniques.

2.1 Instruction Equivalence

In some computers, several machine instructions are equivalent. For example, there are
several equivalent ‘op-codes’ 2 on the Intel 808x series of processors. An evolution can be
attained by replacing applicable op-codes with equivalent op-codes. Assuming that 1 of every
k instructions can be replaced by any of e different instruction codes in this way, we can
produce e programs for every k instructions, or (n/k)e equivalent n-instruction programs.

Instruction equivalence, at least in the 808x family of computers has no impact on time or
space, since equivalent forms of the same instructions operate identically. The effort required
to make these transformations is minimal, and their impact on a serious attacker is relatively
insignificant because detecting any of a set of op-codes is nearly as simple as detecting any
particular element of the set. (i.e. at most a linear number of steps)

2.2 Equivalent Instruction Sequences

A very similar procedure involves replacing instruction sequences with equivalent sequences.
For example, a sequence that adds 17 to a memory location can be replaced by instructions
that add 20 and subtract 3, or any other combination of operations that yield the same
result. This produces a potentially infinite number of equivalent programs. Another way
to get equivalent sequences is by performing operations using different register modes, and
saving and restoring registers respectively before and after executions.

The number of evolutions is potentially infinite in this technique, but it may also increase
time and space. If we wish to use only the space equivalent replacements, we may be severely
limited, while some evolutions may exchange time with space so as to make the resulting
program either faster or slower.

In terms of attack, this process can greatly complicate things. For example, a test for ‘0’
or ‘1’ can be replaced by a large number of equivalent decision procedures. Several equivalent
decision procedures follow:

2i.e. operation code - the portion of the instruction used to determine which machine operation is to be
performed

5

if x = 0 goto A goto x ∗ 5 + . + 1
. . . . + 1: . . .

A: + 6: . . .
goto x + . + 1 y = (x + 17) ∗ 35

. + 1: goto A if x ≤ (35 ∗ 17) goto A

. + 2:
A: . . . A: . . .

Clearly, we can derive enormous numbers of variations on this theme with little trouble.
An attacker trying to determine what is being done in these code fragments has several
problems. One problem is that any number of values may appear possible in x, even though,
based on the original design, we may know that only the two values ‘0’ and ‘1’ are actually
used. For other values, very strange behavior may result. Another problem is that as
designers, we can control the entry points to these routines, whereas the attacker may not
know all of them or understand what we knew as designers about the machine status at
those entry points. By cascading these types of replacements, we can create enormous
numbers of possible program executions, even though very small subsets are ever exercised
due to external constraints on calling values. The complexity of attack may be dramatically
increased while the difficulty of creating these evolutions is minimal.

Care must be taken in implementing evolutions of this sort at a low level because of the
difficulty in identifying and maintaining instruction boundaries and entry points. In higher
level languages, the problem is far less severe.

2.3 Instruction Reordering

Many instruction sequences can be reordered without altering program execution. In gen-
eral, any linearly executed instruction subsequences that alter independent portions of the
program state and output fall under this category. For example, assigning independent val-
ues to independent memory locations can normally be reordered. In parallel processing, it
has been shown that programs produce a POset of dependencies, and programs for auto-
matically analyzing these dependencies have been written to exploit this property in parallel
processing applications. The number of reorderings is limited by the number of equivalent
paths through the program, and the number of paths can be enormous. For example, a
typical operating system call involves setting a series of values and making the call. In the
setting of these parameters, order is rarely important, and we typically set two or three val-
ues, which means that each operating system call might be reordered into any of 6 different
forms, not including any reordering of the calculations used for setting the parameters. In
calls using arguments placed on the stack, we can similarly reorder the sequence of stack
pushes and pops, again producing n! orderings for n different arguments. Here is a simple

6

example with 3 statements in all 6 orderings:
a=a+1; a=a+1; j=j+12;
b=b*3+c; j=j+12; a=a+1;
j=j+12; b=b*3+c; b=b*3+c;
b=b*3+c; b=b*3+c; j=j+12;
j=j+12; a=a+1; b=b*3+c;
a=a+1; j=j+12; a=a+1;

Reordering of instructions generally requires no additional time or space while providing
n! different variants, but this may not drive up the complexity of attack in cases where
specific instructions are being sought for bypass. For example, the multiplication can be
easily found in all six.

2.4 Variable Substitutions

In high level languages, we may use variable substitutions to alter program appearance,
but this has little effect on lower level programs unless compilers produce resorted symbol
tables. At lower levels, we may easily alter the locations of memory storage areas. By
moving variables, we prevent static examination and analysis of parameters and alter memory
locations throughout a program without affecting program execution. Here is an example of
the impact of variable substitutions at the low level, where we have given numerical values
to all instructions and labeled memory locations:

1: 2705 ;jump to 5 1: 2705 ;jump to 5
2: 0 ;loc of ’A’ 2: 1701 ;loc of ’B’
3: 1701 ;loc of ’B’ 3: 2103 ;loc of ’C’
4: 2103 ;loc of ’C’ 4: 0 ;loc of ’A’
5: 1002 ;A=A+1 5: 1004 ;A=A+1
6: 2003 ;B=B-1 6: 2002 ;B=B-1
7: 2103 ;shift B left 7: 2102 ;shift B left
8: 1734 ;xor C with B 8: 1723 ;xor C with B
9: 4306 ;B=0?goto 6 9: 4206 ;B=0?goto 6
10: 0 ;halt CPU 10: 0 ;halt CPU

To see this effect more plainly, we now show only the values of memory locations and
leave out the comments:

7

1: 2705 2705
2: 0 1701
3: 1701 2103
4: 2103 0
5: 1002 1004
6: 2003 2002
7: 2103 2102
8: 1734 1723
9: 4306 4206
10: 0 0

In general, we can place each variable at any program location not yet used by another
conflicting variable. This yields n!v different configurations for v variables in n program lo-
cations. In practice, variables are commonly kept in specific areas, stacks require allocatable
areas, and other restraints on memory locations are common. By altering this practice and
placing variables pseudo-randomly throughout the program, we may cause a great deal of
diffusion. This is easily done by a compiler.

2.5 Adding and Removing Jumps

Many program sequences can be modified by placing a series of jump instructions where pre-
vious instruction sequences were located, relocating the previous instructions, and jumping
back after sequences are completed. This produces arbitrary reordering of instructions, and
at least n! unique sequences for an n-instruction original sequence. Here is a simple example:

A: I1 A: Jump A’
B: I2 B: Jump B’
C: I3 C: Jump C’
D: I4 D: Jump D’
E: I5 E: Jump E’
F: . . . F: . . .

B’: I2;Jump C
E’: I5;Jump F
C’: I3;Jump D
A’: I1;Jump B
D’: I4;Jump E

We can similarly remove existing jump instructions and reorder programs, so long as no
other part of the program transfers control into those sequences. Even in those cases, we
can sometimes alter the jumps into the reordered sequences.

8

The addition of jump instructions increases space and time approximately linearly with
the number of jumps inserted, while their removal increases performance and decreases space.
This does not alter the form of specific instructions being sought, but it does a good job of
obscuring program sequences.

One major problem with this technique is that different instructions take different amounts
of space on some processors. This makes incoming jump instructions error prone unless the
evolution process is done very carefully. At the source code level, the technique is quite
simple, and thus it is particularly useful when we can reassemble or recompile code.

By designing programs with ‘jump tables’ or other similar structures, we may easily
combine reordering of instructions and instruction sequences with altered jump tables to
evolve programs in this way. A similar technique has been used by some software developers
to make tracking of corporate licensees easier. When a particular evolved version is found,
the corporation that released it can be easily identified.

2.6 Adding and Removing Calls

Programs that use subroutine calls and other similar processes can be modified to replace
the call and return sequences with in-line code or altered forms of call and return sequences.
Similarly, any sequence of in-line code can be replaced by subroutine calls and returns.
Assuming that any single instruction can be placed in or removed from a subroutine and that
there are k different subroutine call and return sequences, an n-instruction program results
in nk different evolutions. The time and space alterations are similar to those for inserting
and removing jump instructions except that calls take more instructions to implement and
may impact the stack and other processor information. Here is a simple example of call
modification:

goto Start; goto Start;
f(a): return(2*a); o(): z=z+3;
pr(a): wait-for-printer(); return(0);

print(a); Start: x=3;
return(0); y=2*x;

Start: x=3; o();
y=f(x); x=z+y/2;
z=z+3; wait-for-printer();
x=z+y/2; print(x);
pr(x); halt;
halt;

Another important aspect of call insertion and removal is that it obscures high level

9

design structure, and thus makes tracking similar operations more complex. Analysis of
structure has been used by instructors in computer science courses to detect cheating, and
this technique would likely invalidate those methods for use in automatic detection of pro-
gram similarity.

As in the case of jump insertion and removal, it is far easier to perform call insertion and
removal with knowledge of program structure.

2.7 Garbage Insertion

Any sequence of instructions that are independent of the in-line sequence can be inserted
into the sequence without altering the effective program execution. Every instruction can
have an arbitrary number of garbage instructions inserted, so there is no limit to the number
of equivalent programs we can generate. [?]

Each added instruction increases both time and space, but is valuable for fooling programs
that look for specific instruction sequences. For example, an attack that looks for IO calls to
the operating system could be fooled by inserting spurious calls, thus forcing the successful
attacker to examine more and more of the parameters used in the defense, and possibly
increasing the time required for an attack to an intolerable level. As an example, we offer
the following listing:

Start: a=21; b=-19;
for d=b to 98 step 7 do
c=c+d;
OScall(a,4,d);
done

In this listing, we will now claim that the actual operation being performed is OS-
call(21,4,2), and that the other OScall invocations have invalid parameters, and thus return
failures. The assignment of a is unrelated to this call, as is the repeated addition of d to c.
In fact, the whole loop is unneeded, but this insertion of instructions is used to complicate
the process of analysis.

By making spurious calls and using their results, we may greatly complicate analysis. For
example, we could optionally call one of n different equivalent routines to make a decision,
thus forcing multiple unique but equivalent paths through the program and making complete
analysis far more complex. Again, the insertion creates confusion and diffusion. There is
no limit to the amount of garbage we can insert, and a very broad range of relative ratios
of garbage and program are available. The total number of different programs possible
through garbage insertion is limited from above by the total number of free bits available
for program space, which is limited only by available memory for program storage, and is

10

clearly enormous.

2.8 Program Encodings

Any sequence of symbols in a program can be replaced by any other sequence of symbols,
provided there is a method for undoing that replacement for the purpose of interpretation.
For example, a trivial ‘exclusive-or’ (i.e. XOR) with a set of randomly selected bits stored in
memory produces a random set of instructions, which can be recovered by performing another
XOR with the same set of bits. Two common sorts of encoding schemes are compression and
encryption. In compression, we find a coding that removes redundancy from the instruction
sequence, and replace the original with its compressed form. In encryption, we find an
encoding designed to obscure the content of a sequence. The decoding process reverses the
encoding prior to execution. The number of encodings of a sequence are equivalent to the
number of different sequences, or 2n encodings for an n-bit sequence. A very good example
of using encoding in an attack is given in [?], and this technique might also work well in
defense.

The performance of coding schemes varies dramatically, and in the case where they
must be decoded during operation, this can produce substantial time and space impacts.
Furthermore, and attacker could wait till decoding is completed before bypassing protection
unless the coding scheme varies as well as the things being encoded.

Encoding is strong against attacks involving examination of code, but if the decoded form
is identical in all cases, it may be simple to find a way to alter the program after decoding
or to observe the decoding key as it is entered or stored. Thus the use of coding alone is
not sufficient for defending against serious attacks, even though it may help prevent the
detection of a particular version by examination, as in the case of evading a virus scanner.

2.9 Simulation

Any sequence of instructions can be replaced by an equivalent sequence for a different pro-
cessor, and that processor can be simulated by an interpretation mechanism. For example,
we can invert all of the bits of a program, and simulate a bit-wise inverted version of the
original processor. Any coding scheme can be used for this purpose, including a scheme that
varies the code with the location. Again, there are at least 2n different encodings for an
n-bit instruction sequence.

In the case of simulation, we may have significant advantages in that the attacker must
understand the simulation system as well as the machine language being used, or somehow

11

detect the desired part of the code at run time. Unfortunately, simulation requires substantial
time and space, and can only be used in circumstances where time and space are non-critical.

Here is a partial example of two evolutions of a simulator, where the ‘case’ statement is
used by the simulator to determine how to interpret instructions, and instructions follow the
‘GO’ label as pairs of ‘op-code’, ‘argument’:

Loop: Loop:
Case 0:(op code 0) Case 17: (op code 17)

... ...
6:(op code 6) Case 8: (op code 8)
... ...
4:(op code 4) Case 12: (op code 12)
... ...

...
Esac

goto Loop goto Loop
GO: 0,12 GO: 17,12

4,17 12,17
6,17 8,17
4,3 12,3
0,4 17,4
6,6 8,6

In our example, the ‘case’ statements of the two examples are aligned together so that you
can tell the equivalence between op-codes, but in the second parts of the listings, you can see
the impact of the transformation of op-codes on reading a program listing. In the following
listing, we expand on this theme by a simple transformation of the arguments (op-code 17
subtracts 1 before equivalent execution, op-code 12 adds one, and op-code 8 subtracts 4).
Now, there are no common byte sequences between the two program fragments.

GO: 0,12 GO: 17,13
4,17 12,16
6,17 8,21
4,3 12,2
0,4 17,3
6,6 8,10

By implementing an evolving simulation engine for critical parts of the program, we
can make detection of equivalence require both understanding the difference between the
two evolutions of the simulation engine, and understanding the equivalence between the
two sequences being simulated. This can be carried to multiple levels, with the simulator
simulating another simulator, etc. until we get to the level at which actual decisions are

12

made. We can even evolve the number of levels of simulation used.

It is very easy to implement a simulation engine in most current computers through
the built-in debugging mechanism. The example above where we use a loop around a case
statement shows just how easily simulation can be implemented with classical techniques, and
in practice simulation engines require only a few thousands bytes of source code. Evolving
a simulation engine and the simulated code is also very simple. For example, in the case
above, it required only simple text replacement in the interpreted code and minor changes
to the engine. Another simple alteration would be to XOR the memory value with a pseudo-
random function of the location number in memory. This greatly increases confusion at the
expense of only a small amount of time and space.

2.10 Build and Execute

An extension of the encoding and simulation techniques above is the ‘build-and-execute’
mechanism wherein we build instructions prior to execution and then execute them. This
is so-called self-modifying code, and again the potential complexity is equivalent to the
complexity of encodings. One of the very nice points about building instructions for execution
is that it obscures the instruction being executed from observation until just before execution
time. This drives the time required for attack up so as to make it very noticeable in many
cases.

As a method of evolution, this technique requires that we design a set of build-and-
execute mechanisms and install them into a program using some sort of pseudo-random
selection and placement mechanism. As in the cases of many other mechanisms we have
discussed, knowledge of the program being evolved is quite useful in implementing this sort
of evolution.

Many build-and-execute schemes implement very complex codings that vary with use so
that the instructions built may change with the details of the execution. For example, the
use of relative addresses ‘XOR’ed with instructions and filling in arguments at run time are
common techniques.

Here is a simple example of self-modifying code, where the ‘Add’ instruction is modified
to add each of the elements of a list of 17 numbers. In this example, we assume that the
‘op-code’ for ‘Add’ is 2300, and that the address being added is stored in the last two digits
of the add instruction.

13

AI=2299+@list ;initialize Add Instruction
loop: AI=AI+1 ;increment pointer
AI: 0 ;initial value is 0

(AI—100) < list+16, goto loop ;loop
DONE ;whatever follows

list: 12 ;the list to be added
17
...

list+16 43 ;end of the list

Assuming that the attacker has to observe these modifications at run time in order to
determine when a particular operation takes place, an automated attack would apparently
have to trace program execution and react to the particular instructions being interpreted
under such an evolutionary scheme rather than searching for particular strings in a program
or perform analysis from the program’s appearance in memory.

2.11 Induced Redundancy

The use of redundancy is a basic technique in integrity protection. For example, the use of
cryptographic checksums for detecting arbitrary corruption applies redundant information
in the form of the stored checksum value, and CRC codes and parity bits are redundant
information commonly used to detect corruption due to noise of particular characteristics.
The same concept can be applied to preventing attacks on programs.

In this case, we induce redundancy by repeating test procedures used to make decisions
so that multiple tests must be passed in order for an operation to be accepted. When used
in conjunction with other evolution techniques, this provides a means by which the defender
can prevent the attacker from being certain that the defense has been bypassed. For example,
if a particular test is performed a random number of times on any given attempt at attack,
the attacker cannot be certain that all of the relevant tests have been bypassed. Even if the
attack works on one evolution, that doesn’t mean it will work on a significant number of
other evolutions.

In the following example, we show a redundant overall test which requires 3 out of 4
partial tests strewn throughout a program to be passed in order to pass the overall test.

14

count=0;
. . .
x=open-file(‘zz’)
. . .
if (x<3) count++;
. . .
if (x>0) count++;
. . .
if (count < 1) OR (count > 2) nogood;
. . .
x=open-file(‘zz’)
. . .
if (x = 2) OR (x = 1) count++;
. . .
if (count < 2) OR (count > 3) nogood;
. . .
x=open-file(‘zz’)
. . .
if (x AND 3) > 0 count++;
. . .
if ((count AND 4) != 4) nogood;
. . .

A few notes are in order here. Notice first, that there is no explicit ‘good’ decision, but
rather a set of hurdles that have to be passed and that are strewn throughout the program.
If any of these tests fail, the ‘nogood’ decision is made, but there is no simple way to avoid
the last ‘nogood’ decision. If there were an explicit ‘good’ decision, then an attacker could
simply try to locate the ‘good’ decision point and begin operation there. Also, if the decisions
were not strewn throughout the program, an attacker could easily bypass the whole set of
decisions, but by intermixing them with the rest of the program, we force the attacker to
work harder. Another important point is that there is no value for ‘count’ or ‘x’ that the
attacker can select at the start of the program that will bypass all of the tests. This means
that there is no simple way to forge the values required to make tests pass. Multiple forgeries
are required. We could also use different variables for different parts of the tests, and further
drive up the complexity of the attack process.

In practice, it is fairly simple to devise a series of tests and disperse them throughout a
program, but ultimately tests depend on the state of the system for their accuracy, and if
we are to eliminate all sorts simplistic forgery, we must not only make the tests redundant,
but also the data upon which they depend. This increases the time and space requirements
for accuracy, which yields our usual protection tradeoff between integrity and space/time.

15

2.12 Intermixing Programs

A rather complex sort of evolution is the intermixing of programs so that instructions from
two independent operations are intermixed. This is complex to do because there are many
possible interactions between memory and register states. In practice, we have found it far
too complex to analyze and implement this sort of evolution at low levels, but in higher level
programming languages, we see it as having great potential.

In this example, we have two subroutines that are often called, and which leave their
results in independent variables ‘x’ and ‘y’. As an evolution, we simply intermix the routines
so that both functions are performed when either is desired, but no interference results
because the results are stored independently, and by convention, we use or store the results
of these routines immediately after the routines are called. Subroutine 1 is called with two
integers as its argument, while subroutine 2 is called with an integer and a real number:

Subroutine 1 Subroutine 2 Mixed Subroutine
s1(i,j):= s2(i,r):= sb(i,j,r):=
x=0; x=0;
x2=17; x2=17;

y=i+12; y=i+12;
if (i<3) x=x+6; if (i<3) x=x+6;

y=y*r/3.74; y=y*r/3.74;
x=x*i+j/17; x=x*i+j/17;
return; return; return;

This sort of intermixing creates two problems for the attacker. The first problem is that
the intermixing could be varied so as to produce a substantial number of different orderings of
the statements in the subroutine. We can select the next statement from either subroutine, so
long as there are unselected statements from both remaining, which yields on the order of 2n

different equivalent subroutines. The second problem is that the attacker cannot tell which
function is being used when it is called, and may thus be forced to trace the implications of
both calls through several following program steps before realizing what information can be
ignored.

In general, we can take n unrelated programs and, assuming we are a bit careful, mix
them together without ill effects. This seems to be very confusing to someone trying to
analyze the resulting code, especially if the routines that are intermixed are selected at
random for each defense. The mixing process also has the effect of disguising the subroutine
calls because the calls themselves are different for different intermix combinations. In our
example, the two mixed routines had two arguments each, and the mixed routine had three
parameters.

16

2.13 Anti-Debugger Mutations

In order to make debugging programs difficult, many different techniques have been devel-
oped within the computing industry. The basic principle is to make the things the debugger
does to track program execution fail when debugging the evolved program. Since each pro-
cessor has a somewhat different debugging mechanism, we will make assumptions designed
so as to make the examples easy to understand.

Disassemblers in systems with multiple instruction lengths have methods for synchro-
nizing instructions. When encountering a jump instruction, typically, disassemblers assume
that the following instruction is a legal instruction, but we can use these instructions to
mask instructions around them by placing misleading operation codes after jumps, and re-
turning at an offset 1 or more bytes from the end of the jump. The disassemblers may see
a conditional jump (that is designed to always be true in actual operation) followed by an
unconditional 3-byte jump which actually masks a 2-byte operating system call. Here is an
example from an 8086 processor that calls ‘int 13’:

go: jne 1 ;two byte conditional jump (flags clear)
jle cd ;conditional jump masking ‘int’
adc (13) 90 ;add carry 90 masking 13 and no-op (90)

An attempt at disassembly might fail in this context, but a debugger which observes each
instructions as it is processed should be able to properly detect the operation.

In a similar fashion, we can include jump instructions whose last byte (usually the ad-
dress jumped to) corresponds to a desired operation code, and place the code jumped to
appropriately so that the jump works and the proper return address is in the middle of the
previously executed instruction. In this way, we reuse the last bytes of the jump location as
operation codes on the next pass through the code.

This technique again masks the true instructions being executed until execution time,
thus forcing the debugger to trace each instruction in order to find a particular instruction
type.

Debugging can often be turned off and turned back on in such a fashion that the debugger
cannot tell that any change was made. From all appearances, the debugger executes normally,
and yet some number of intervening instructions may go unobserved. This depends on the
ability of the debugger to detect attempts to turn it off. We may use any addressing mode of
the processor to alter the memory locations used by the debugger, so in order for the debugger
to be certain to catch all attempts to access its address space, it must either simulate the
entire operation of the computer, or determine all addresses used on each memory operation
of the program at run time, determine whether those addresses impact the debugger, and
forge the instruction if needed. Either of these options consumes a great deal of processing

17

power and results in substantial time consumption, normally within the range where people
notice the slowdown.

Another common trick is to make the operation of the defense depend on the presence of
it’s own debugging routine. For example, we could use the address of a built-in debugging
routine or some offset from that address in an arithmetic operation which alters pointers,
so that if the debugger operated by the defense is not operating (or alternatively, if any
other debugger is operating), the code operates improperly. Another variation is to have
the internal debugger alter normal instructions at execution so that (as an example) ‘move’
instructions that copy information between memory locations use different memory loca-
tions, reverse memory locations, alter operating modes, etc. This is essentially a simulation
technique as described earlier.

Here is a simple example, again from an 8086 processor, of an instruction sequence
containing illegal instructions and ‘no-op’ instructions, where the ‘debugger’ simulates altered
instructions when these are encountered. Note that this is a common technique used by
operating systems for operating system calls, and thus is also a call insertion technique as
described earlier. In this example, the no-op instruction shifts the ‘ax’ register left 3 bits,
and the illegal instruction (designated ‘ill’) sets the value 20 in the ‘bx’ register. Another
debugger trying to debug this code would not alter the execution, and thus the program
would not operate in the same manner.

go: mov ax,3 ; initialize ax
nop ; no-op instruction (shift ax left 3)
add ax,21 ; regular instruction
ill ; illegal instruction (setq bx to 20)
add bx,3 ; regular instruction

All of these techniques can be selectively inserted and evolved during program evolution
so as to produce a very complex debugging problem for the attacker. Even though some
human attackers might eventually be able to get past this line of defense, they might have to
observe a large number of different variations in order to determine the whole set of debugger
bypass mechanisms, and then they would have to program attacks for all of them into an
automated attack in order to operate automatically against this technique.

2.14 Mix and Match

All of the techniques described above may be mixed together, applied in any sequence, and
applied recursively, thus providing a very rich environment for evolution. The only limitation
is that identifying which code sequences may be operated on by each technique may be quite
difficult unless the evolution engine knows something about program structure. For example,

18

when a program is designed with numerous jump instructions that enter into the middle of
other code sequences, it may be very difficult to determine whether an alteration will have an
impact on some other execution sequence. This is the same problem we cause the attacker
to go through, and as we have seen it can make things rather complex.

3 Providing Evolution in Defenses

As we have seen, considerable computation may be required in order to analyze a program
in terms sufficient to perform evolution. This problem might be solved in several ways.
The most obvious way is to mathematically formulate the conditions required for each sort
of evolution being considered and evaluate a program to determine when and where these
conditions are true. The problem with this sort of analysis is that it is, in general, undecidable
whether most program properties are true.

To see this, we take the example of determining whether or not a program performs a
jump into a particular location. This would be important to making an alteration such as
random instruction insertion, since we cannot safely move instructions in such a manner that
the incoming jumps have no altered effects. In general, we can only assure equivalence by
determining where these entry points are and relocating the incoming jumps to fit the other
alterations. The problem is that we can make determining whether or not a jump occurs
equivalent to solving the halting problem as follows:

P := If J(P ,x) then halt, else jump-to x; . . .

In this case, the decision routine ‘J(P ,x)’ determines whether program P jumps to loca-
tion x. If J(P ,x) determines that P does jump to x, then P halts, and thus J is wrong. On
the other hand, if J decides that P does NOT jump to x, then it does. Thus, J is always
wrong, regardless of how it works, or in other words, you cannot write a J of this sort that
works.

Naturally, this works for the attacker in the same way as the defender, and it is this sort
of complexity that we are exploiting to make attack complex, but in order to perform the
evolution for defense, the defender must be able to act with relative safety and in order to
be practical, safe evolutions must be determined rapidly.

Very similar demonstrations can be made for many of the techniques we have discussed.
Specifically, the equivalence of evolved instruction sequences is undecidable [?] [?] and the
equivalence of machines [?] and therefore of simulations is undecidable. Variable substitu-
tions, instruction reordering, adding and removing jumps and subroutines, and detecting
garbage insertion appear to produce decidable, although in some cases nontrivial, equiva-
lences.

19

The solution we have explored is to provide some additional information that can be used
by the evolution system during evolution to identify when and where code can be altered in
particular ways. These ‘markings’ are removed after evolution so that they are not available
to the attacker in the modified form of the program, since they might serve as indicators of
the relationship between the original and modified forms of the program. We call the fully
marked version of the program a ‘template’.

3.1 Avoiding Attacks

We must assume that the attacker has the same information as the developer of the defense
because even the developer who writes a defense may eventually take part in an attack. We
may keep the template in encrypted form on-line to further complicate the attack process,
but it is certainly possible for an attacker to eventually gain access to the template. For these
reasons, any method which is to have real strength must base its strength on the complexity
introduced by some information only available to the evolver during the evolution process.

For these reasons, we will suppose that only pseudo-random numbers used to determine
how to perform evolution are exclusively available to the evolver. Assuming we can reliably
generate hard-to-guess pseudo-random numbers, 3 we then have the problem of assuring
they are only available to the evolver. In order to assure this, we may take the strategy of
building an evolver that operates at program installation, and generates a pseudo-random
number based on various times and dates, keys provided by the user, and pre-existing system
conditions. The evolver generates these numbers on the fly and does not remember them
after they are used. Thus, in a normal installation, only the evolver ever has the information
about which technique was applied in which way and under which circumstance, and that
information is lost by the end of the evolution process, leaving only the effect of applying
those numbers, and not the numbers themselves or other intermediate information used in
the evolutionary process.

In order to bypass this constraint, the attacking program must be active before the
defense is installed, but since this defense is designed as a part of the operating system, it
would be very unusual for other programs to be operating prior to and during the installation
process. This is particularly useful if included in the operationg system distribution, or if
used just after a ‘cold boot’ from a known ‘golden unit’ version of the operating system.

As a side note, even knowing what sorts of evolutions are performed on which portions
of a program and in which order the evolutions are done, does not make it trivial to map
their effect in order to make meaningful modifications to the evolved version. For example,

3There are several well known techniques for this, the most common ones based on repeated exponentia-
tion in a large modulus composed of large primes (i.e. based on the RSA cryptosystem [?]).

20

an evolution that generates a table look up based on parameter values which only apply to a
small number of possible values, requires considerable effort to analyze. If this is done after
another evolution, the effort becomes far more complex, because you may have to associate
operations across numerous evolutions. The attacking program might have to remember a
great deal of information or consume a great deal of time in order to determine hos to make
such a modification.

3.2 Mixing Techniques

One key to building effective evolution in defenses is finding an appropriate mix of techniques
and when to apply them so that performance requirements are met, while attack complexity
is driven up. For example, we might include a call transformation at the factory, an encoding
scheme carried out at product installation, jump table and sequence equivalence schemes at
system start up, and instruction building during each system call. This mix may minimize
performance impact while providing high complexity for attacks across systems. Other mixes
may be more appropriate for different environments.

Building an evolutionary system into a defense, however, is not quite as simple as im-
plementing a set of evolutionary schemes and putting them into a product. Reliability and
repeatability are important factors, and great care must be taken to assure that the end
user isn’t impacted by the evolutions or the evolutionary process. Debugging can be quite
difficult, since the operation may change as the program operates, and you can never be ab-
solutely certain what you are debugging unless you create appropriate tools for the process.
The tools you devise for debugging may also be used by an attacker, so they too must be
considered in analyzing the strength of the defense.

3.3 Selecting the Mix

As a design strategy, we normally trade time and space for protection, so it seems reasonable
to devise a method wherein we specify final time and space usage, provide a template, and
tell the evolver to evolve until the time and space usage are met. We may then categorize
evolution techniques in terms of time and space tradeoffs, and subject to statistical variation,
use techniques in proportion to their impacts on these factors. This allows us to generate a
mix of techniques that meet the desired tradeoffs, but it doesn’t force substantial evolution.
To assure substantial evolution, we might specify some minimum evolution requirements,
and fail due to lack of time or space if these minimums cannot be met.

The degree to which we attain protection is clearly dependent on the amount of free
time and space provided for evolution. By our estimates based on speculation and nominal

21

experience, a 50% space increase has relatively little impact on performance while providing
a great deal of obscurity, but clearly more work is required in this area before we can draw
conclusions.

A simple algorithm for controlling evolution based on the idea of limiting the size of the
final product and using different types of evolution with varying probabilities follows. In
this case, we have assigned the evolutions (evolution1 ... evolutionn) probabilities (prob1 ...
probn), and perform evolution based on pseudo-random numbers:

outer: if total-space > threshold-space goto end;
x=0;y=0;
a=pseudo-random number between 0 and 1;

inner: y=y+1;
x=x+proby;
if x < a goto inner;
do evolutiony;
goto outer;

end: exit;

3.4 When to Evolve

Another important problem to consider is when to evolve. Although we don’t have a closed
form solution to this problem, we believe we have found some rational principles. Again, we
want to encourage other researchers to look at these problems in more depth.

Evolution ‘at the factory’ before sending out each disk is a rational approach which has
several advantages and disadvantages. The major advantage is the ability to uniquely identify
each disk sent out from the factory. This allows tracking of unauthorized distributions to their
source, provides a means for generating unique registration numbers (e.g. a cryptographic
checksum of the programs) which can be verified by the programs themselves at various points
and by the manufacturer to assure that no corruptions have taken place in distribution. This
also increases the complexity of attacking the original distribution, since it is unique for each
disk.

On the negative side, production efficiency is dramatically reduced when we cannot simply
duplicate each disk, especially when strong quality control procedures are used. For example,
we may test every disk prior to sending it to manufacturing and perform statistical tests on
disks after duplication. When using evolution at the factory, we dramatically increase the
costs associated with equivalent quality control. A tradeoff at the factory is common, where
some people use evolution once for each production run, or produce evolutions for each large
customer.

22

Evolution at installation is critical if each system is to have a unique and confidential
evolution in place. An evolution at the factory or in the distribution path could be copied or
found by an attacker. After installation, an attacker could prevent further evolutions or store
the internal values for the evolution process. For these reasons, some evolution at installation
is important, but evolution also takes time, and in the current computing environment, time
consumed at installation is treated as a serious negative by most customers. One way
to perform evolution without incurring much customer wrath is to put up screens full of
information at various points during the installation process, and require user input at those
points. While the user figures out what to do, evolution can be performed. The same
technique can be used while waiting for the insertion of a floppy disk or during other human
operations.

Evolution after installation produces several problems, most notably performance prob-
lems and integrity checking problems. When we produce evolutions at the factory, we can
create integrity information and provide it to the customer. When the customer installs
the product, they can verify the integrity prior to installation, do installation along with
its associated evolution, and produce new integrity checking information for subsequent use.
When we evolve on every system start up, we cannot use external checking to assure against
corruption, and we cannot trust internal checking because it could have been corrupted. The
major advantage of evolution after installation is that an attack which succeeds on any one
day might fail on the next day if the attacker has not been able to sufficiently corrupt the
mechanism so as to produce a bypass under multiple evolutions or so as to prevent further
evolution completely..

It seems clear that the more time and space we have available for evolution, the more
we can obscure the evolved program. It is also clear that different amounts of time and
space are available at the factory, during installation, during start up, and during operation.
For a small resident program operating under DOS, we can hardly put in a great deal of
self-evolution capability; while at installation, we may be able to evolve the installed version
without even copying the evolver onto the system; and at the factory, we may be able to run
very fast computers with a great deal of storage for a very long time in order to produce a
single evolution for one large corporate customer.

3.5 Experiments With Evolutionary Defenses

We performed a number of experiments with evolutionary defenses. The first step was to
write a general purpose program evolver which we could apply to test the viability of the
techniques under consideration and understand their interactions and how well they obscured
the meaning of a program to an experienced programmer. In this sense, the general purpose
evolver was a tremendous success, but program evolution also presented several problems.

23

The first major problem in program evolution is that in order to do the more appealing
sorts of program evolution, a great deal of program specific knowledge is required. If we
were to analyze a program from the assembler level and try to determine what it did in
order to determine where to make evolutions, we would be faced with a horrendous problem.
We would have to be able to reverse engineer the executable program to the point where
we could show each of the properties required for each form of evolution over all program
subsequences, and then apply the techniques to the applicable subsequences. In order to
do this recursively, we would have a major mathematical problem in determining which
techniques could then be applied to the partially evolved program. Even for classes of
programs obeying very stringent rules this seems to be a major problem. This is in keeping
with our previous theoretical results, and therefore this is not too surprising.

We decided to provide annotations in source programs that indicate the extent over
which each technique can be applied. We created a Lisp program that reads the annotations
and calls routines that implement each type of evolution. We then compiled the evolved
sources to produce compiled evolved executables. Thus, we are designing for evolution. As
an example, a code fragment and one evolution are show below:
:beginGarbage real oou, oi, ou, oj;

for(i=0;i¡99;i++) { subroutine ox()
:beginCalls {c=d+e;

a=b+5; oi=23;
c=d+e; b=a+i*c;}
b=a+i*c; subroutine ob()

:endCalls {x=2+y/z;
} ou=oi+12;}

:beginReorder oj=23+ih;
x=x&2; for(i=0;i < 99;i++) {
y=y-5; a=b+5;
z=xray(23); ox();

:endReorder }
:beginCalls y=y-5;

if (z<27) print(”Error 23”); z=xray(23);
x=2+y/z; x=x&2;
y=sqrt(23*a+c); if (z<27) print(”Error 23”);

:endCalls ob();
:endGarbage oou=23*oi;

y=sqrt(23*a+c);

It is plain that the evolved version is quite different from the original, and this example
only applies a few of the techniques above in a relatively simple manner, and over a very
small fragment.

24

In our experiments with high level languages, we have found negligible performance
impact except in inner loops, and with minimal effort, we can maintain performance by
limiting evolution within these areas. In terms of space consumption, the impact is even less
significant, but this can be controlled by the degree to which we introduce space consuming
techniques. For example, the introduction of garbage statements into a program is performed
with some finite probability between each two statements. Higher probabilities induce more
space and time overhead, while lower probabilities result in less confusion.

The evolution process itself was quite fast, even though we were operating in an in-
terpreted language on programs that had to be compiled after evolution. By way of a
benchmark, we had no difficulty evolving a thousand line program and compiling the result
in well under 1 minute. The implications for attack are quite stunning. It means that we
could easily produce about 1,500 different evolutions per day of a program far more com-
plex than a typical virus, each of which would require substantial effort to defend against
by scanning for known versions. Even though this attack is easily defended against by the
best existing defenses, the vast majority of the worlds computers using virus defenses are
using techniques against which this would be quite effective. By way of perspective, in 1992,
the total number of known virus variations existing in the world (outside of our laboratory)
passed 1,500, while we have had the ability to generate more than that many new variations
per day for several years.

We have tested and installed a partial variation on this theme in computer defense prod-
ucts for over 2 years. A typical memory resident protection system in a PC uses under
4Kbytes of memory (far less than the size of a typical compiled 1,000 line C program), and
it is not terribly difficult to perform some simplistic evolutions at product installation time
and on every system reboot. Among the techniques already in widespread commercial use
are altering filenames of protection critical files for each installation, encrypting the contents
of these files with system dependent keys determined at installation time, altering memory
resident software at the factory and at installation time, and using anti-debugging techniques
to prevent attacks that look for memory locations by simulating operation. We have shown
feasibility for encrypting significant portions of the DOS operating system and decrypting it
at execution time for use, and hope to have prototypes in testing fairly shortly. It appears
that there are no significant impediments to the widespread application of these techniques
other than our desire to apply them and pay the price in time and space.

4 Attacks on Evolutionary Defenses

As we discussed earlier, human attacks on evolutionary defenses may be possible with con-
certed expert effort and physical access, but the question that must be addressed in more

25

depth is the difficulty of implementing an automated attack against a defense applying these
techniques. Although we cannot yet address the specific complexity of attacks against these
techniques, some results are fairly apparent, and we present them here.

4.1 Points of Attack

The most obvious point of attack is a particular instruction or operation performed by the
program. For example, system calls are generally standardized, and if the defense calls the
original system call after checking parameters, it might be easy to find the original entry
point and exploit it for attack. This is done by several computer viruses, which attempt to
bypass controls by direct access to the hardware or operating system internals. One defense
is to evolve the core of the operating system, while another is to confuse attack by evolving
the calling mechanisms. In the latter case, calls that bypass protection may be of the wrong
form unless significant attack effort is applied to determine and apply the altered calling
sequence.

Since we may sustain low-level attacks, normal operating system protection does not help
in this matter because an attack introduced before the operating system is started can by-
pass even sound operating system controls on processors with hardware memory protection.
Low-level attack with direct access to hardware is straight forward, especially when system
structures are known to attackers. For this reason, any system defending against this sort of
attack must apply some technique to prevent an attacker from examining and modifying the
protected information or simulating the entire operating system without protection. Even
with low-level encryption, the encryption software itself must be evolved in order to prevent
an attacker from finding the key used for encryption or forging the I/O used to get the key
from the user.

4.2 Tracing Attacks

As we described earlier, tracing programs at execution time or simulation program execution
can ultimately result in precise information about a single program execution. A perfect
simulation cannot be avoided, and a human attacker would likely find a way around any
evolution, given enough time and persistence. The use of redundancy appears to be the
only effective way to force the attacker to use tracing on each attack and repeatedly during
normal operation in order to systematically bypass defenses.

26

4.3 Size of the Space versus Complexity

A critical factor to understanding the real impact of evolution as a defense is understanding
that generating a large search space does not necessarily result in a difficult attack problem.
Just as passwords may be easily guessed even though the total number of possible passwords
are large, a large number of evolutions does not necessarily make attack detection of a partic-
ular portion of a program difficult. For example, reordering a sequential series of instructions
which are never entered from other portions of a program does not make detection very dif-
ficult, even though it may create any of n! different program sequences. We can detect the
sequence by searching for ANY of the instructions, and checking off that instruction from a
list. This takes only linear time with the number of instructions in the sequence. We thus
conclude that increasing the sheer number of possibilities does not necessarily increase the
complexity of attack.

Even more importantly, we must be clear about what we are trying to prevent through the
evolutionary process. We have been discussing the difficulty of determining the equivalence of
two program sequences, but this does not necessarily correspond to the difficulty of attacking
a system. For example, denial can be caused regardless of what the operating system does
if we can sufficiently corrupt the contents of a disk.

4.4 Toward Computational Advantage

The ultimate goal of evolutionary defense seems then to be finding a way to modify a
program so that the computation required for some set of attacks is sufficiently large as to
make automation of these attacks infeasible. There is a tradeoff involving the amount of
time and space required to perform evolution, and thus, in order for such a system to be
rational, we generally must exploit some computational advantage. That is, we must find
a way to perform a transformation whose meaning is hard to invert relative to the aspects
important to the attacker, by making the effort required to bypass the transformation large
relative to the effort required to perform the transformation.

The concept of creating computational advantage is not new. For example, the most
commonly used cryptosystems can easily be broken given enough computation. The way
they succeed is to keep the computation required to encrypt and decrypt with the secret key
relatively low, while making the computation required without they secret key very high. In
the case of program evolution, the goal is the same, but the circumstances require that the
computer constantly be able to derive meaningful information in the form of proper program
operation.

27

5 Summary, Conclusions, and Further Work

We have introduced the concept of using evolution to increase the complexity of attack,
and we believe that this concept is sound and will have a lasting impact on protection in
operating systems as well as in other areas of information protection, but clearly, our work
has only begun with this effort. We have identified several methods of evolution that may be
effective, and in some cases, have even shown that some properties of these techniques are
undecidable, but we have found no firm basis for believing that these particular techniques
will indeed be effective against serious human attackers except the very flimsy arguments
about the complexity of program equivalence and conclusions about the size of the resulting
probability spaces. As we have also shown, these factors may not indicate the difficulty of
some sorts of attack.

The idea may be sound, and these techniques may be effective, but more mathematical
analysis is required in order to assert a high degree of assurance in these notions. Indeed,
a major stumbling block along the road to a mathematical analysis of the enhancement of
protection through this technique is a mathematical understanding of protection issues and
level attacks against mechanisms. As in the area of cryptography, there is rarely a sound basis
for the practical techniques we apply, but we still have the notions of diffusion, confusion, and
computational advantage to consider as possible metrics for evaluating efficacy. Perhaps the
best positive conclusion we may draw from this work is that evolution seems to be practical,
effective, and operable, and that it dramatically increases the workload of attackers relative
to non-evolutionary systems.

Clearly, a great deal of further work is required in order for this field to mature. Specif-
ically, more mathematical analysis of attacks and defenses, a better understanding of what
we are trying to conceal and the degree to which evolution is effective at concealing it, and
results on the tradeoffs of time and space of techniques are clearly called for.

References

[1] C. Shannon, “Communications Theory of Secrecy Systems”, Bell Systems Technical
Journal, 1949 pp656-715

[2] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems”, CACM V21#2, Feb. 1978.

[3] “The Data Encryption Standard”, National Bureau of Standards, Washington, D.C,
1980

28

[4] F. Cohen, “Computer Viruses - Theory and Experiments”, DOD/NBS 7th Conference
on Computer Security, originally appearing in IFIP-sec 84, also appearing in IFIP-
TC11 “Computers and Security”, V6(1987), pp22-35 and other publications in several
languages.

[5] F. Cohen, “Algorithmic Authentication of Identification”, Information Age, V7#1 (Jan.
1985), pp 35-41

[6] F. Cohen, “Computer Viruses”, Dissertation at the University of Southern California,
1986. - originally published by ASP Press, 1985

[7] F. Cohen, “A Short Course on Computer Viruses”, 1990 ISBN#1-878109-01-4, ASP
Press, PO Box 81270, Pittsburgh, PA 15217, USA

[8] F. Cohen, “A Note On High Integrity PC Bootstrapping”, IFIP-SEC “Computers and
Security” (submitted, 1991)

[9] A. Turing, “On Computable Numbers, with an Application to the Entscheidungsprob-
lem”, London Math Soc Ser 2, 1936.

[10] E. Wilding (Ed.), “Computer Virus Bulletin”, many issues in 1990-92

29

